1887

Abstract

A slightly halophilic, Gram-stain-negative, straight-rod-shaped aerobe, strain JO1, was isolated from jeotgal, a traditional Korean fermented seafood. Cells were observed singly or in pairs and had 2–5 peritrichous flagella. Optimal growth occurred at 25 °C, in 6.5 % (w/v) salts and at pH 5.0–6.0. Strain JO1 was oxidase-negative and catalase-positive. Cells did not reduce fumarate, nitrate or nitrite on respiration. Acid was produced from several carbohydrates and the strain utilized many sugars and amino acids as carbon and nitrogen sources. The main fatty acids were C 3-OH, C, C cyclo and summed feature 3 (C 7/iso-C 2-OH). DNA–DNA hybridization experiments with strain JO1 and DSM 4741 revealed 24 % relatedness, although high 16S rRNA gene sequence similarity (98.9 %) was observed between these strains. Based on phenotypic, genotypic and phylogenetic analyses, it is proposed that the isolate from jeotgal should be classified as a representative of a novel species, sp. nov., with strain JO1 (=KCTC 22486=JCM 15644) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.008847-0
2010-03-01
2021-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/3/620.html?itemId=/content/journal/ijsem/10.1099/ijs.0.008847-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Castillo A. M., Ludwig W., Schleifer K. H., Ventosa A. 2002a; Proposal of Cobetia marina gen. nov., comb. nov. within the family Halomonadaceae , to include the species Halomonas marina . Syst Appl Microbiol 25:207–211 [CrossRef]
    [Google Scholar]
  2. Arahal D. R., Ludwig W., Schleifer K. H., Ventosa A. 2002b; Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52:241–249
    [Google Scholar]
  3. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Bejar V., Quesada E., Ventosa A. 2007; Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 57:2436–2446
    [Google Scholar]
  4. Baker G. C., Smith J. J., Cowan D. A. 2003; Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555 [CrossRef]
    [Google Scholar]
  5. Baumann L., Baumann P., Mandel M., Allen R. D. 1972; Taxonomy of aerobic marine eubacteria. J Bacteriol 110:402–429
    [Google Scholar]
  6. Baumann L., Bowditch R. D., Baumann P. 1983; Description of Deleya gen. nov. created to accommodate the marine species Alcaligenes aestus , A. pacificus , A. cupidus , A. venustus , and Pseudomonas marina . Int J Syst Bacteriol 33:793–802 [CrossRef]
    [Google Scholar]
  7. Callies E., Mannheim W. 1978; Classification of the Flavobacterium - Cytophaga complex on the basis of respiratory quinones and fumarate respiration. Int J Syst Bacteriol 28:14–19
    [Google Scholar]
  8. Cobet A. B., Wirsen C. Jr, Jones G. E. 1970; The effect of nickel on a marine bacterium, Arthrobacter marinus sp. nov. J Gen Microbiol 62:159–169 [CrossRef]
    [Google Scholar]
  9. Dobson S. J., Franzmann P. D. 1996; Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas , and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 46:550–558 [CrossRef]
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376
    [Google Scholar]
  12. Felsenstein J. 2004 phylip (phylogeny inference package), version 3.6. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  13. Gonzalez J. M., Saiz-Jimenez C. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773
    [Google Scholar]
  14. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. 1974; Nocardia coeliaca , Nocardia autotrophica , and the nocardin strain. Int J Syst Bacteriol 24:54–63
    [Google Scholar]
  15. Gram H. 1884; Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschr Med 2:185–189 (in German
    [Google Scholar]
  16. Hirayama H., Tamaoka J., Horikoshi K. 1996; Improved immobilization of DNA to microwell plates for DNA-DNA hybridization. Nucleic Acids Res 24:4098–4099 [CrossRef]
    [Google Scholar]
  17. Holding A. J., Collee J. G. 1971; Routine biochemical tests. Methods Microbiol 6A:1–32
    [Google Scholar]
  18. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32
    [Google Scholar]
  19. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [CrossRef]
    [Google Scholar]
  20. MIDI 1999 Sherlock Microbial Identification System Operating Manual, version 3.0 Newark, DE: MIDI Inc;
    [Google Scholar]
  21. Quesada E., Ventosa A., Rodriguez-Valera F., Megias L., Ramos-Cormenzana A. 1983; Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. J Gen Microbiol 129:2649–2657
    [Google Scholar]
  22. Romanenko L. A., Schumann P., Rohde M., Mikhailov V. V., Stackebrandt E. 2002; Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthia aurantium . Int J Syst Evol Microbiol 52:1767–1772 [CrossRef]
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  24. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20: 16
    [Google Scholar]
  25. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology . pp 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  26. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849
    [Google Scholar]
  27. Suh H. K., Yoon S. S. 1987; A study on the regional characteristics of Korean chotkal. Korean J Diet Cult 2:45–54
    [Google Scholar]
  28. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.008847-0
Loading
/content/journal/ijsem/10.1099/ijs.0.008847-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error