1887

Abstract

This study characterized strain WP01, a Gram-staining-negative, rod-shaped, aerobic bacterium isolated from a polycyclic aromatic hydrocarbon-contaminated soil in New Zealand. Strain WP01 shared many characteristics of the genus : the predominant respiratory quinone (89 %) was ubiquinone with ten isoprene units (Q-10); the major fatty acids were C 7, C 7, C and C 2-OH; spermidine was the major polyamine; the DNA G+C content was 63.8 mol%; and the -specific 16S rRNA signatures were conserved. A point of difference from other species of the genus was that strain WP01 reduced nitrate to nitrite. The polar lipid pattern consisted of the predominant compounds diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipids. 16S rRNA gene sequence analysis showed that, amongst the recognized species of the genus , strain WP01 was most similar to GIFU 9882 and YT (>97 % 16S rRNA gene sequence similarities). The low DNA–DNA relatedness values between strain WP01 and GIFU 9882 (46.6 %) and DSM 16289 (25.6 %) indicated no relatedness at the species level. On the basis of these characteristics, it is concluded that strain WP01 should be considered as representing a novel species within the genus , for which the name sp. nov. is proposed. The type strain is WP01 (=DSM 19371=ICMP 13533).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.008144-0
2010-02-01
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/2/413.html?itemId=/content/journal/ijsem/10.1099/ijs.0.008144-0&mimeType=html&fmt=ahah

References

  1. Addison S. L., Foote S. M., Reid N. M., Lloyd-Jones G. 2007; Novosphingobium nitrogenifigens sp. nov., a polyhydroxyalkanoate-accumulating diazotroph isolated from a New Zealand pulp and paper wastewater. Int J Syst Evol Microbiol 57:2467–2471 [CrossRef]
    [Google Scholar]
  2. Busse H.-J., Kämpfer P., Denner E. B. M. 1999; Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23:242–251 [CrossRef]
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  4. Grimont P. A. D. 1999; Taxonomy and classification of bacteria. In Manual of Clinical Microbiology , 7th edn. pp 249–259 Edited by Murray P. R., Baron E. J., Pfaller M. A., Tenover F. C., Yolken R. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  6. Leys N. M., Ryngaert A., Bastiaens L., Verstraete W., Top E. M., Springael D. 2004; Occurrence and phylogenetic diversity of Sphingomonas strains in sites contaminated with polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70:1944–1955 [CrossRef]
    [Google Scholar]
  7. Lloyd-Jones G., Lau P. C. 1997; Glutathione S -transferase-encoding gene as a potential probe for environmental bacterial isolates capable of degrading polycyclic aromatic hydrocarbons. Appl Environ Microbiol 63:3286–3290
    [Google Scholar]
  8. Lloyd-Jones G., Laurie A. D., Hunter D. W. F., Fraser R. 1999; Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand soils. FEMS Microbiol Ecol 29:69–79 [CrossRef]
    [Google Scholar]
  9. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  10. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  11. Maruyama T., Park H.-D., Ozawa K., Tanaka Y., Sumino T., Hamana K., Hiraishi A., Kato K. 2006; Sphingosinicella microcystinivorans gen. , nov., sp. nov. a microcystin-degrading bacterium. Int J Syst Evol Microbiol 5685–89 [CrossRef]
    [Google Scholar]
  12. Pal R., Bala S., Dadhwal M., Kumar M., Dhingra G., Prakash O., Prabagaran S. R., Shivaji S., Cullum J. other authors 2005 Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp.nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas ] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55, 1965–1972 [CrossRef]
  13. Pal R., Bhasin V. K., Lal R. 2006; Proposal to reclassify [ Sphingomonas ] xenophaga Stolz et al. 2000 and [ Sphingomonas ] taejonensis Lee etal. 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. Int J Syst Evol Microbiol 56:667–670 [CrossRef]
    [Google Scholar]
  14. Pinyakong O., Habe H., Omori T. 2003; The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 49:1–19 [CrossRef]
    [Google Scholar]
  15. Prakash O., Lal R. 2006; Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int J Syst Evol Microbiol 56:2147–2152 [CrossRef]
    [Google Scholar]
  16. Riis V., Mai W. 1988; Gas chromatographic determination of poly- β -hydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis. J Chromatogr 445:285–289 [CrossRef]
    [Google Scholar]
  17. Rochelle P. A., Will J. A. K., Fry J. C., Jenkins G. J. S., Parkes R. J., Turley C. M., Weightman A. J. 1995; Extraction and amplification of 16S rRNA genes from deep marine sediments and seawater to assess bacterial community diversity. Nucleic Acids in the Environment pp 219–239 Edited by Trevors J. T, van Elsas J. D. New York: Springer-Verlag;
    [Google Scholar]
  18. Singh A., Lal R. 2009; Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 59:162–166 [CrossRef]
    [Google Scholar]
  19. Takeuchi M., Sawada H., Oyaizu H., Yokota A. 1994; Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria . Int J Syst Bacteriol 44:308–314 [CrossRef]
    [Google Scholar]
  20. Takeuchi M., Sakane T., Yanagi M., Yamasato K., Hamana K., Yokota A. 1995; Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp.nov. and Sphingomonas mali sp. nov. Int J Syst Bacteriol 45:334–341 [CrossRef]
    [Google Scholar]
  21. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera,Sphingobium , Novosphingobium and Sphingopyxis , on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  22. Ushiba Y., Takahara Y., Ohta H. 2003; Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int J Syst Evol Microbiol 53:2045–2048 [CrossRef]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  24. Wittich R.-M., Busse H.-J., Kämpfer P., Tiirola M., Wieser M., Macedo A. J., Abraham W.-R. 2007; Sphingobium aromaticiconvertens sp. nov., a xenobiotic-compound-degrading bacterium from polluted river sediment. Int J Syst Evol Microbiol 57:306–310 [CrossRef]
    [Google Scholar]
  25. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of the Sphingomonas paucimobilis gen.nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov.,Sphingomonas adhaesiva sp. nov., Sphingomonascapsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119 [CrossRef]
    [Google Scholar]
  26. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K. 2002; Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium , Novosphingobium and Sphingopyxis , in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 52:1485–1496 [CrossRef]
    [Google Scholar]
  27. Young C. C., Ho M.-J., Arun A. B., Chen W.-M., Lai W.-A., Shen F.-T., Rekha P. D., Yassin A. F. 2007; Sphingobium olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 57:2613–2617 [CrossRef]
    [Google Scholar]
  28. Young C.-C., Arun A. B., Kämpfer P., Busse H.-J., Lai W.-A., Chen W.-M., Shen F.-T., Rekha P. D. 2008; Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ. ex Benth.) Swingle. Int J Syst Evol Microbiol 58:1801–1806 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.008144-0
Loading
/content/journal/ijsem/10.1099/ijs.0.008144-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error