Two Gram-negative, strictly aerobic bacterial strains, designated CL-AP6 and CL-AP22, were isolated from a culture of a green alga, , established from the Antarctic. Cells of the strains were straight rods and motile by means of a single polar flagellum. The strains grew with 0.5–8 % (w/v) NaCl (optimum, 1–2 %) and at 4–33 °C (optimum, 25 °C) and pH 6.5–9.1 (optimum, pH 7.5–8.1). The two strains shared 98.8 % 16S rRNA gene sequence similarity. Analysis of the 16S rRNA gene sequences of strains CL-AP6 and CL-AP22 revealed that they were members of the genus and were most closely related to C10-2 (95.5–95.8 % sequence similarity) and next to NBRC 14163 (95.1–95.5 % sequence similarity) and to other members of the genus (<95.2 % sequence similarity). Phylogenetic analyses based on the 16S rRNA gene sequences showed that strain CL-AP6 formed a robust clade with strain CL-AP22, and that this clade clustered tightly with the nearest clade containing and . The major isoprenoid quinone of strains CL-AP6 and CL-AP22 was Q-9 and the major cellular fatty acids were C 7 (40.2–41.6 %), summed feature 3 (C 7 and/or iso-C 2-OH; 26.3–26.8 %), C (13.7–13.9 %) and C (5.8–6.2 %). The genomic DNA G+C contents of strains CL-AP6 and CL-AP22 were 59.1 and 57.2 mol%, respectively. DNA–DNA hybridization experiments revealed high relatedness values (98.5±0.5 %; mean±, =2) between strains CL-AP6 and CL-AP22, indicating that the two strains constituted a single species. However, the two strains differed phenotypically from by their inability to grow without NaCl, temperature range for growth, hydrolysis of starch and production of certain enzymes. The phylogenetic analysis and physiological and biochemical data showed that strains CL-AP6 and CL-AP22 should be classified as representing a novel species in the genus , for which the name sp. nov. is proposed. The type strain is CL-AP6 (=KCCM 90073=JCM 15562).


Article metrics loading...

Loading full text...

Full text loading...



  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J.(1990). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef] [Google Scholar]
  2. Anzai, Y., Kudo, Y. & Oyaizu, H.(1997). The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 47, 249–251.[CrossRef] [Google Scholar]
  3. Anzai, Y., Kim, H., Park, J.-Y., Wakabayashi, H. & Oyaizu, H.(2000). Phylogenetic affiliation of pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50, 1563–1589.[CrossRef] [Google Scholar]
  4. Bauer, A. W., Kirby, W. M. M., Sherris, J. C. & Turck, M.(1966). Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45, 493–496. [Google Scholar]
  5. Choi, D. H., Kim, Y.-G., Hwang, C. Y., Yi, H., Chun, J. & Cho, B. C.(2006).Tenacibaculum litoreum sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 56, 635–640.[CrossRef] [Google Scholar]
  6. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Bandela, A. M., Cardenas, E., Garrity, G. M. & other authors(2007). The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35, D169–D172.[CrossRef] [Google Scholar]
  7. Collins, M. D.(1985). Analysis of isoprenoid quinones. Methods Microbiol 18, 329–366. [Google Scholar]
  8. Englen, M. D. & Kelley, L. C.(2000). A rapid DNA isolation procedure for the identification of Campylobacter jejuni by the polymerase chain reaction. Lett Appl Microbiol 31, 421–426.[CrossRef] [Google Scholar]
  9. Felsenstein, J.(1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  10. Fitch, W. M.(1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef] [Google Scholar]
  11. Guillard, R. R. L. & Ryther, J. H.(1962). Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve). Can J Microbiol 8, 229–239.[CrossRef] [Google Scholar]
  12. Gupta, S. K., Kumari, R., Prakash, O. & Lal, R.(2008).Pseudomonas panipatensis sp. nov., isolated from an oil-contaminated site. Int J Syst Evol Microbiol 58, 1339–1345.[CrossRef] [Google Scholar]
  13. Hansen, G. H. & Sørheim, R.(1991). Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13, 231–241.[CrossRef] [Google Scholar]
  14. Jeon, Y. S., Chung, H., Park, S., Hur, I., Lee, J. H. & Chun, J.(2005). jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21, 3171–3173.[CrossRef] [Google Scholar]
  15. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  16. Kawai, Y. & Yabuuchi, E.(1975).Pseudomonas pertucinogena sp. nov., an organism previously misidentified as Bordetella pertussis. Int J Syst Bacteriol 25, 317–323.[CrossRef] [Google Scholar]
  17. King, E. O., Ward, M. K. & Raney, D. E.(1954). Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44, 301–307. [Google Scholar]
  18. Kwon, S. W., Kim, J. S., Park, I. C., Yoon, S. H., Park, D. H., Lim, C. K. & Go, S. J.(2003).Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea. Int J Syst Evol Microbiol 53, 21–27.[CrossRef] [Google Scholar]
  19. Lai, Q. & Shao, Z.(2008).Pseudomonas xiamenensis sp. nov., a denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 58, 1911–1915.[CrossRef] [Google Scholar]
  20. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  21. Lemos, M. L., Toranzo, A. E. & Barja, J. L.(1985). Modified medium for the oxidation-fermentation test in the identification of marine bacteria. Appl Environ Microbiol 49, 1541–1543. [Google Scholar]
  22. Liu, C. & Shao, Z.(2005).Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55, 1181–1186.[CrossRef] [Google Scholar]
  23. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  24. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  25. Migula, W.(1894). Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1, 235–238 (in German). [Google Scholar]
  26. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A. & Parlett, J. H.(1984). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef] [Google Scholar]
  27. Ostle, A. G. & Holt, J. G.(1982). Nile blue A as fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44, 238–241. [Google Scholar]
  28. Oyaizu, H. & Komagata, K.(1983). Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 29, 17–40.[CrossRef] [Google Scholar]
  29. Palleroni, N. J.(1984). Genus I. Pseudomonas Migula 1894, 237AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 141–199. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  30. Palleroni, N. J.(2005). Genus I. Pseudomonas Migula 1894, 237AL (Nom. Cons., Opin. 5 of the Jud. Comm. 1952, 121). In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part B, pp. 323–379. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  31. Posada, D. & Crandall, K. A.(1998).modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef] [Google Scholar]
  32. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  33. Sambrook, J. & Russell, D. W.(2001).Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  34. Skerman, V. B. D.(1967).A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins.
  35. Smibert, R. M. & Krieg, N. R.(1994). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  36. Sneath, P. H. A., Stevens, M. & Sackin, M. J.(1981). Numerical taxonomy of Pseudomonas based on published records of substrate utilization. Antonie Van Leeuwenhoek 47, 423–448.[CrossRef] [Google Scholar]
  37. Swofford, D. L.(1998). Phylogenetic analysis using parsimony (paup), version 4. Sunderland, MA: Sinauer Associates.
  38. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  39. Yamada, Y., Takanami-Nakamura, H., Tahara, T., Oyaizu, H. & Komagata, K.(1982). The ubiquinone systems in the strains of Pseudomonas species. J Gen Appl Microbiol 28, 7–12.[CrossRef] [Google Scholar]

Data & Media loading...


Extended neighbour-joining tree based on 16S rRNA gene sequences showing the positions of strains CL-AP6 and CL-AP22 and related species. [PDF](23 KB)


Transmission electron micrograph of a negatively stained cell of strain CL-AP6 . [PDF](265 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error