1887

Abstract

Three strains of an unusual hippurate-positive species were isolated at 37 °C from caecal contents of broiler chickens and a turkey. All strains were initially identified as by means of genus-specific PCR, but none was further identified using specific PCRs for known thermophilic species. Phylogenetic analyses based on 16S rRNA, and gene sequences revealed that these strains formed a robust clade distinct from other species. Amplified fragment length polymorphism analysis and whole-cell protein electrophoresis were subsequently carried out and confirmed the divergence between the avian strains and other taxa. These data indicate that the unidentified strains belong to a novel taxon which could be distinguished from other campylobacters through its phenotypic and genotypic characteristics. The name sp. nov., is proposed for the novel species, with the type strain 86/06 (=LMG 24591 =CCUG 56292).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.007419-0
2009-09-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/9/2364.html?itemId=/content/journal/ijsem/10.1099/ijs.0.007419-0&mimeType=html&fmt=ahah

References

  1. Bang, D. D., Wedderkopp, A., Pedersen, K. & Madsen, M. ( 2002; ). Rapid PCR using nested primers of the 16S rRNA and the hippuricase (hipO) genes to detect Campylobacter jejuni and Campylobacter coli in environmental samples. Mol Cell Probes 16, 359–369.[CrossRef]
    [Google Scholar]
  2. Bolton, F. J., Wareing, D. R. A., Skirrow, M. B. & Hutchinson, D. N. ( 1992; ). Identification and biotyping of campylobacters. In Identification Methods in Applied and Environmental Microbiology, pp. 151–161. Edited by R. G. Board, D. Jones & F. A Skinner. Oxford: Blackwell Scientific.
  3. Burnett, T. A., Hornitzky, A. M., Kuhnert, P. & Djordjevic, S. P. ( 2002; ). Speciating Campylobacter jejuni and Campylobacter coli isolates from poultry and humans using six PCR-based assays. FEMS Microbiol Lett 216, 201–209.[CrossRef]
    [Google Scholar]
  4. Debruyne, L., On, S. L. W., De Brandt, E. & Vandamme, P. ( 2009; ). Novel Campylobacter lari-like bacteria from humans and molluscs: description of Campylobacter peloridis sp. nov., Campylobacter lari subsp. concheus subsp. nov. and Campylobacter lari subsp. lari subsp. nov. Int J Syst Evol Microbiol 59, 1126–1132.[CrossRef]
    [Google Scholar]
  5. Denis, M., Soumet, C., Rivoal, K., Ermel, G., Blivet, D., Salvat, G. & Colin, P. ( 1999; ). Development of a m-PCR assay for simultaneous identification of Campylobacter jejuni and C. coli. Lett Appl Microbiol 29, 406–410.[CrossRef]
    [Google Scholar]
  6. Foster, G., Holmes, B., Steigerwalt, A. G., Lawson, P. A., Thorne, P., Byrer, D. E., Ross, H. M., Xerry, J., Thompson, P. M. & Collins, M. D. ( 2004; ). Campylobacter insulaenigrae sp. nov., isolated from marine mammals. Int J Syst Evol Microbiol 54, 2369–2373.[CrossRef]
    [Google Scholar]
  7. Hani, E. K. & Chan, V. L. ( 1995; ). Expression and characterization of Campylobacter jejuni benzoylglycine amidohydrolase (hippuricase) gene in Escherichia coli. J Bacteriol 177, 2396–2402.
    [Google Scholar]
  8. Inglis, G. D., Hoar, B. M., Whiteside, D. P. & Morck, D. W. ( 2007; ). Campylobacter canadensis sp. nov., from captive whooping cranes in Canada. Int J Syst Evol Microbiol 57, 2636–2644.[CrossRef]
    [Google Scholar]
  9. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  10. Kärenlampi, R. I., Tolvanen, T. P. & Hänninen, M. L. ( 2004; ). Phylogenetic analysis and PCR-restriction fragment length polymorphism identification of Campylobacter species based on partial groEL gene sequences. J Clin Microbiol 42, 5731–5738.[CrossRef]
    [Google Scholar]
  11. Korczak, B. M., Stieber, R., Emler, S., Burnens, A. P., Frey, J. & Kuhnert, P. ( 2006; ). Genetic relatedness within the genus Campylobacter inferred from rpoB sequences. Int J Syst Evol Microbiol 56, 937–945.[CrossRef]
    [Google Scholar]
  12. Lawson, A. J., Linton, D., Stanley, J. & Owen, R. J. ( 1997; ). Polymerase chain reaction detection and speciation of Campylobacter upsaliensis and C. helveticus in human faeces and comparison with culture techniques. J Appl Microbiol 83, 375–380.[CrossRef]
    [Google Scholar]
  13. Linton, D., Owen, R. J. & Stanley, J. ( 1996; ). Rapid identification by PCR of the genus Campylobacter and of five Campylobacter species enteropathogenic for man and animals. Res Microbiol 147, 707–718.[CrossRef]
    [Google Scholar]
  14. Mesbah, M. & Whitman, W. B. ( 1989; ). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479, 297–306.[CrossRef]
    [Google Scholar]
  15. Nakari, U.-M., Puhakka, A. & Siitonen, A. ( 2008; ). Correct identification and discrimination between Campylobacter jejuni and C. coli by a standardized hippurate test and species-specific polymerase chain reaction. Eur J Clin Microbiol Infect Dis 27, 513–518.[CrossRef]
    [Google Scholar]
  16. On, S. L. & Holmes, B. ( 1991a; ). Effect of inoculum size on the phenotypic characterization of Campylobacter species. J Clin Microbiol 29, 923–926.
    [Google Scholar]
  17. On, S. L. & Holmes, B. ( 1991b; ). Reproducibility of tolerance tests that are useful in the identification of campylobacteria. J Clin Microbiol 29, 1785–1788.
    [Google Scholar]
  18. On, S. L. & Holmes, B. ( 1992; ). Assessment of enzyme detection tests useful in identification of campylobacteria. J Clin Microbiol 30, 746–749.
    [Google Scholar]
  19. On, S. L., Holmes, B. & Sackin, M. J. ( 1996; ). A probability matrix for the identification of campylobacters, helicobacters and allied taxa. J Appl Bacteriol 81, 425–432.
    [Google Scholar]
  20. Pot, B., Vandamme, P. & Kersters, K. ( 1994; ). Analysis of electrophoretic whole-organism protein fingerprinting. In Chemical Methods in Bacterial Systematics, pp. 493–521. Edited by M. Goodfellow & A. G. O'Donnell. Chichester: Wiley.
  21. Sebald, M. & Véron, M. ( 1963; ). Teneur en bases de l'ADN et classification des vibrions. Ann Inst Pasteur (Paris) 105, 897–910 (in French).
    [Google Scholar]
  22. Slater, E. R. & Owen, R. J. ( 1997; ). Restriction fragment length polymorphism analysis shows that the hippuricase gene of Campylobacter jejuni is highly conserved. Lett Appl Microbiol 25, 274–278.[CrossRef]
    [Google Scholar]
  23. Ursing, J. B., Lior, H. & Owen, R. J. ( 1994; ). Proposal of minimal standards for describing new species of the family Campylobacteraceae. Int J Syst Bacteriol 44, 842–845.[CrossRef]
    [Google Scholar]
  24. Vandamme, P., Pot, B. & Kersters, K. ( 1991; ). Differentiation of campylobacters and Campylobacter-like organisms by numerical analysis of one-dimensional electrophoretic protein patterns. Syst Appl Microbiol 14, 57–66.[CrossRef]
    [Google Scholar]
  25. Vandamme, P., Dewhirst, F. E., Paster, B. J. & On, S. L. W. ( 2005; ). Genus I. Campylobacter Sebald and Véron 1963, 907AL. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part C, pp. 1147–1160. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  26. Wainø, M., Bang, D. D., Lund, M., Nordentoft, S., Andersen, J. S., Pedersen, K. & Madsen, M. ( 2003; ). Identification of campylobacteria isolated from Danish broilers by phenotypic tests and species-specific PCR assays. J Appl Microbiol 95, 649–655.[CrossRef]
    [Google Scholar]
  27. Zanoni, R. G., Rossi, M., Giacomucci, D., Sanguinetti, V. & Manfreda, G. ( 2007; ). Occurrence and antibiotic susceptibility of Helicobacter pullorum from broiler chickens and commercial laying hens in Italy. Int J Food Microbiol 116, 168–173.[CrossRef]
    [Google Scholar]
  28. Zanoni, R. G., Debruyne, L., Rossi, M., Revez, J. & Vandamme, P. ( 2009; ). Campylobacter cuniculorum sp. nov., from rabbits. Int J Syst Evol Microbiol 59, 1666–1671.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.007419-0
Loading
/content/journal/ijsem/10.1099/ijs.0.007419-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2364 - 2369

Unrooted trees, based on (Fig. S1) and (Fig. S2) gene sequences, showing the phylogenetic relationships of the three strains of sp. nov.

Dendrogram of the three strains of sp. nov. based on UPGMA cluster analysis of one-dimensional SDS-PAGE cell protein profiles.

[PDF file of Supplementary Figs S1-S3](102 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error