1887

Abstract

Three strains of Gram-negative, aerobic, motile bacteria with bipolar flagella were isolated from acidic tundra wetland soils near the city of Vorkuta and from the Chukotka and Yugorsky Peninsulas and designated strains V-022, Ch-022 and Ju-022. The cells were rod-shaped, 0.5–0.6 µm in width and 1.3–4.5 µm in length and reproduced by irregular fission. These bacteria were facultative methylotrophs that used methanol, methylamines and a wide range of other sources of carbon and energy such as sugars and polysaccharides, ethanol and amino acids. The isolates used the Calvin–Benson pathway for the assimilation of one-carbon compounds and were unable to fix nitrogen. The new strains were moderately acidophilic and psychrotolerant, capable of growth over a pH range of 4.0 to 7.8, with optimum growth at pH 5.5–6.0. Growth occurred between 4 and 30 °C (optimum 20–25 °C). The principal phospholipid fatty acid was Cω7. The DNA G+C content of strain V-022 was 65.2 mol%. Analysis of the 16S rRNA gene sequences revealed that all three isolates V-022, Ch-022 and Yu-022 exhibited almost identical 16S rRNA gene sequences (99.9 % gene sequence similarity) and formed a new lineage within the class . The name is suggested to accommodate this new genus and novel species with strain V-022 ( = DSM 22001 = VKM V-2485) as the type strain of the type species.

Funding
This study was supported by the:
  • Federal Scientific Programs of the Presidium of the Russian Academy of Sciences no. 16
  • The Biodiversity
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.007005-0
2012-03-01
2021-05-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/3/638.html?itemId=/content/journal/ijsem/10.1099/ijs.0.007005-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402[PubMed] [CrossRef]
    [Google Scholar]
  2. Anthony C. 1982 The Biochemistry of Methylotrophs New York: Academic Press;
    [Google Scholar]
  3. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E. 2000; Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66:5259–5266 [CrossRef][PubMed]
    [Google Scholar]
  4. Berestovskaya Yu. Yu., Vasilyeva L. V., Chestnykh O. V., Zavarzin G. A. 2002; Methanotrophs of the psychrophilic microbial community of Russian arctic tundra. Microbiology (English translation of Mikrobiologiia) 71:538–544
    [Google Scholar]
  5. Bodrossy L., Holmes E. M., Holmes A. J., Kovács K. L., Murrell J. C. 1997; Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov.. Arch Microbiol 168:493–503 [CrossRef][PubMed]
    [Google Scholar]
  6. Bowman J. P., McCammon S. A., Skerratt J. H. 1997; Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143:1451–1459 [CrossRef][PubMed]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  8. Dedysh S. N., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Semrau J. D., Liesack W., Tiedje J. M. 2002; Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261[PubMed]
    [Google Scholar]
  9. Dedysh S. N., Berestovskaya Y. Y., Vasylieva L. V., Belova S. E., Khmelenina V. N., Suzina N. E., Trotsenko Y. A., Liesack W., Zavarzin G. A. 2004; Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156 [CrossRef][PubMed]
    [Google Scholar]
  10. Dedysh S. N., Knief C., Dunfield P. F. 2005a; Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670 [CrossRef][PubMed]
    [Google Scholar]
  11. Dedysh S. N., Smirnova K. V., Khmelenina V. N., Suzina N. E., Liesack W., Trotsenko Y. A. 2005b; Methylotrophic autotrophy in Beijerinckia mobilis . J Bacteriol 187:3884–3888 [CrossRef][PubMed]
    [Google Scholar]
  12. Doronina N. V., Trotsenko Y. A., Krausova V. I., Boulygina E. S., Tourova T. P. 1998; Methylopila capsulata gen. nov., sp. nov., a novel non-pigmented aerobic facultatively methylotrophic bacterium. Int J Syst Bacteriol 48:1313–1321 [CrossRef][PubMed]
    [Google Scholar]
  13. Eady R. R., Large P. J. 1968; Purification and properties of an amine dehydrogenase from Pseudomonas AM1 and its role in growth on methylamine. Biochem J 106:245–255[PubMed]
    [Google Scholar]
  14. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. 1995; Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208 [CrossRef][PubMed]
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  16. Kennedy C. 2005; Genus I. Beijerinckia . In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2C pp. 423–432 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer; [CrossRef]
    [Google Scholar]
  17. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. other authors 2007; clustal w and clustal x version 2.0. Bioinformatics 23:2947–2948[PubMed] [CrossRef]
    [Google Scholar]
  18. Lidstrom M. E. 2006; Aerobic methylotrophic prokaryotes. In The Prokaryotes, 3rd edn. vol. 2 pp. 618–634 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer; [CrossRef]
    [Google Scholar]
  19. Loginova N. V., Trotsenko Y. A. 1979; Autotrophic growth on methanol by bacteria isolated from activated sludge. FEMS Microbiol Lett 5:239–243 [CrossRef]
    [Google Scholar]
  20. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275[PubMed]
    [Google Scholar]
  21. MacDonald R. C., Fall R. 1993; Detection of substantial emissions of methanol from plants to the atmosphere. Atmos Environ 27:1709–1713 [CrossRef]
    [Google Scholar]
  22. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–214 [CrossRef]
    [Google Scholar]
  23. McDonald I. R., Murrell J. C. 1997; The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63:3218–3224[PubMed]
    [Google Scholar]
  24. McDonald I. R., Kenna E. M., Murrell J. C. 1995; Detection of methanotrophic bacteria in environmental samples with the PCR. Appl Environ Microbiol 61:116–121[PubMed]
    [Google Scholar]
  25. Senum G. I., Gaffney J. S. 1985; A reexamination of the tropospheric methane cycle: geophysical implications. In The Carbon Cycle and Atmospheric CO2: Natural Variations, Archean to Present pp. 61–69 Edited by Sundquist E. T., Broecker W. S. Washington, DC: American Geophysical Union; [CrossRef]
    [Google Scholar]
  26. Sorokin D. Yu., Trotsenko Y. A., Doronina N. V., Tourova T. P., Galinski E. A., Kolganova T. V., Muyzer G. 2007; Methylohalomonas lacus gen. nov., sp. nov. and Methylonatrum kenyense gen. nov., sp. nov., methylotrophic gammaproteobacteria from hypersaline lakes. Int J Syst Evol Microbiol 57:2762–2769 [CrossRef][PubMed]
    [Google Scholar]
  27. Trotsenko Y. A., Khmelenina V. N. 2002; Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177:123–131 [CrossRef][PubMed]
    [Google Scholar]
  28. Trotsenko Yu. A., Ivanova E. G., Doronina N. V. 2001; Aerobic methylotrophic bacteria as phytosymbionts. Microbiology (English translation of Mikrobiologiia) 70:623–633
    [Google Scholar]
  29. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570[PubMed]
    [Google Scholar]
  30. Vasilyeva L. V., Omelchenko M. V., Berestovskaya Y. Y., Lysenko A. M., Abraham W.-R., Dedysh S. N., Zavarzin G. A. 2006; Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil. Int J Syst Evol Microbiol 56:2083–2088[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.007005-0
Loading
/content/journal/ijsem/10.1099/ijs.0.007005-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error