Strain FIRDI 006, isolated from silage cattle feed, was characterized by using phenotypic and molecular taxonomic methods. The strain was a homofermentative lactic acid bacterium; the cells stained Gram-positive and were catalase-negative, non-motile, facultatively anaerobic rods. 16S rRNA gene sequence analysis revealed that the strain belongs phylogenetically to the genus and can be placed within the group. and were the most closely related species, with 16S rRNA gene sequence similarities of 99.53 and 99.46 % to the respective type strains. Low gene sequence similarities (<90 %) and low DNA–DNA reassociation values (<45 %) were obtained between the strain and the phylogenetically closest neighbours. Based on phenotypic and genetic evidence, the strain is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is FIRDI 006 (=BCRC 17755 =DSM 21401).


Article metrics loading...

Loading full text...

Full text loading...



  1. Berger, B., Pridmore, R. D., Barretto, C., Delmas-Julien, F., Schreiber, K., Arigoni, F. & Brüssow, H.(2007). Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. J Bacteriol 189, 1311–1321.[CrossRef] [Google Scholar]
  2. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W.(2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef] [Google Scholar]
  3. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  4. Felis, G. E. & Dellaglio, F.(2007). Taxonomy of lactobacilli and bifidobacteria. Curr Issues Intest Microbiol 8, 44–61. [Google Scholar]
  5. Felsenstein, J.(1984). Distance methods for inferring phylogenies: a justification. Evolution 38, 16–24.[CrossRef] [Google Scholar]
  6. Felsenstein, J.(2005).phylip (phylogeny inference package), version 3.65. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  7. Ferencik, M., Mikes, Z., Ebringer, L., Jahnova, E. & Ciznar, I.(2000). Immunostimulatory and other beneficial health effects of lactic acid bacteria. Bratisl Lek Listy 101, 51–53 (in Slovak). [Google Scholar]
  8. Fujisawa, T., Benno, Y., Yaeshima, T. & Mitsuoka, T.(1992). Taxonomic study of the Lactobacillus acidophilus group, with recognition of Lactobacillus gallinarum sp. nov. and Lactobacillus johnsonii sp. nov. and synonymy of Lactobacillus acidophilus group A3 (Johnson et al. 1980) with the type strain of Lactobacillus amylovorus (Nakamura 1981). Int J Syst Bacteriol 42, 487–491.[CrossRef] [Google Scholar]
  9. Goris, J., Suzuki, K., De Vos, P., Nakase, T. & Kersters, K.(1998). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44, 1148–1153.[CrossRef] [Google Scholar]
  10. Hammes, W. P. & Vogel, R. F.(1995). The genus Lactobacillus. In The Genera of Lactic Acid Bacteria, pp. 19–54. Edited by B. J. B. Wood & W. H. Holzapfel. London: Blackie Academic & Professional.
  11. Hansen, P. A. & Mocquot, G.(1970).Lactobacillus acidophilus (Moro) comb. nov. Int J Syst Bacteriol 20, 325–327.[CrossRef] [Google Scholar]
  12. Huis in't Veld, J. H.(1992). The role of lactic acid bacteria in nutrition and health. Ned Tijdschr Tandheelkd 99, 467–471 (in Dutch). [Google Scholar]
  13. Johnson, J. L., Phelps, C. F., Cummins, C. S., London, J. & Gasser, F.(1980). Taxonomy of the Lactobacillus acidophilus group. Int J Syst Bacteriol 30, 53–68.[CrossRef] [Google Scholar]
  14. Lauer, E. & Kandler, O.(1980).Lactobacillus gasseri sp. nov., a new species of the subgenus Thermobacterium. Zentralbl Bakteriol Mikrobiol Hyg 1 Abt Orig C 1, 75–78. [Google Scholar]
  15. Lauer, E., Helming, C. & Kandler, O.(1980). Heterogeneity of the species Lactobacillus acidophilus (Moro) Hansen and Mocquot as revealed by biochemical characteristics and DNA-DNA hybridization. Zentralbl Bakteriol Mikrobiol Hyg 1 Abt Orig C 1, 150–168. [Google Scholar]
  16. Metchnikoff, E.(1908).Prolongation of Life. New York: Putnam.
  17. Mukai, T., Arihara, K., Ikeda, A., Nomura, K., Suzuki, F. & Ohori, H.(2003).Lactobacillus kitasatonis sp. nov., from chicken intestine. Int J Syst Evol Microbiol 53, 2055–2059.[CrossRef] [Google Scholar]
  18. Naser, S. M., Dawyndt, P., Hoste, B., Gevers, D., Vandemeulebroecke, K., Cleenwerck, I., Vancanneyt, M. & Swings, J.(2007). Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 57, 2777–2789.[CrossRef] [Google Scholar]
  19. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  20. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  21. Taranto, M. P., Perdigon, G., Medici, M. & De Valdez, G. F.(2004). Animal model for in vivo evaluation of cholesterol reduction by lactic acid bacteria. Methods Mol Biol 268, 417–422. [Google Scholar]
  22. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  23. Wang, L. T., Lee, F. L., Tai, C. J., Yokota, A. & Kuo, H. P.(2007). Reclassification of Bacillus axarquiensis Ruiz-García et al. 2005 and Bacillus malacitensis Ruiz-García et al. 2005 as later heterotypic synonyms of Bacillus mojavensis Roberts et al. 1994. Int J Syst Evol Microbiol 57, 1663–1667.[CrossRef] [Google Scholar]
  24. Yamamoto, S. & Harayama, S.(1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61, 1104–1109. [Google Scholar]

Data & Media loading...


vol. , part 8, pp. 2064 - 2068

Neighbour-joining (Figs S1 and S3) and maximum-parsimony (Figs S2 and S4) trees based on 16S rRNA gene sequences (Figs S1 and S2) and gyrB gene sequences (Figs S3 and S4) of strains.

DNA relatedness between strain FIRDI 006 ( sp. nov.) and type strains of closely related species and subspecies.

[PDF file of Supplementary Figures and Table](109 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error