During the course of a research project with free-living, nitrogen-fixing bacteria, we determined the 16S rRNA gene sequence of strains UQM 1685 and CIP 106281 and discovered that they were only 90.6–91.2 % similar to the sequences of strains of other species and subspecies. Moreover, the highest similarity to these sequences (99.7 %) corresponded to strains of (including ). Other diagnostic features confirmed that the two strains have the same origin but do not descend from the nomenclatural type. At the same time, LMG 2819 was characterized and it was found that its properties also do not agree with the original description of the species, although it can be considered a member of the genus. Further characterization, including chemotaxonomic and other phenotypic traits, allows us to propose (i) the identification of strains CIP 106281 and UQM 1685 as strains of and (ii) the designation of strain LMG 2819 (=CECT 7311) as the type strain of a novel species, sp. nov.


Article metrics loading...

Loading full text...

Full text loading...



  1. Amor Asunción, J. M., Frontera, G. & Dellepiane, E.(1980). Species of the genus Beijerinckia Derx isolated from a soil of Corrientes (Argentina). Rev Argent Microbiol 12, 23–28 (in Spanish). [Google Scholar]
  2. Becking, J. H.(1961). Studies on nitrogen-fixing bacteria of the genus Beijerinckia. I. Geographical and ecological distribution in soils. Plant Soil 14, 49–81.[CrossRef] [Google Scholar]
  3. Derx, H. G.(1950).Beijerinckia, a new genus of nitrogen-fixing bacteria occurring in tropical soils. Proc K Ned Akad Wet Ser C 53, 140–147. [Google Scholar]
  4. Döbereiner, J. & Ruschel, A. P.(1958). Uma nova espécie de Beijerinckia. Rev Biol 1, 261–272 (in Portuguese). [Google Scholar]
  5. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  6. Garrity, G. M., Bell, J. A. & Lilburn, T.(2005). Family VI. Beijerinckiaceae fam. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part C, p. 422. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  7. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors)(1994).Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  8. Kämpfer, P. & Kroppenstedt, R. M.(1996). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef] [Google Scholar]
  9. Kloepper, J. W. & Schroth, M. N.(1978). Plant growth-promoting rhizobacteria on radishes. II. In Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, pp. 879–882. Angers, France: Station de Pathologie Végétale et Phytobactériologie, INRA.
  10. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  11. Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenegger, M., Neumaier, J., Bachleitner, M. & Schleifer, K.-H.(1998). Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19, 554–568.[CrossRef] [Google Scholar]
  12. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  13. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  14. Moore, E. R. B., Arnscheidt, A., Krüger, A., Strömpl, C. & Mau, M.(1999). Simplified protocols for the preparation of genomic DNA from bacterial cultures. In Molecular Microbial Ecology Manual, pp.– Edited by A. D. L. Akkermans, J. D van Elsas & F. J. de Bruijn. Dordrecht: Kluwer.
  15. Nei, M. & Li, W. H.(1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76, 5269–5273.[CrossRef] [Google Scholar]
  16. Orphan, V. J., Hinrichs, K. U., Ussler, W., III, Paull, C. K., Taylor, L. T., Sylva, S. P., Hayes, J. M. & DeLong, E. F.(2001). Comparative analysis of methane-oxidizing archaea and sulphate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67, 1922–1934.[CrossRef] [Google Scholar]
  17. Sokal, R. R. & Michener, C. D.(1958). A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38, 1409–1438. [Google Scholar]
  18. Tchan, Y. T.(1957). Studies of nitrogen-fixing bacteria. VI. A new species of nitrogen-fixing bacteria. Proc Linn Soc N S W 82, 314–316. [Google Scholar]
  19. Thompson, J. P. & Skerman, V. B. D.(1979).Azotobacteraceae: the Taxonomy and Ecology of the Aerobic Nitrogen-Fixing Bacteria. London: Academic Press.

Data & Media loading...


ARDRA profiles generated with I (a) and I (b). Lanes: 1, subsp. LMG 2817 ; 2, subsp. LMG 2818 ; 3, LMG 2819; 4, subsp. DSM 2329 ; 5, subsp. LMG 3899 ; 6, LMG 3912 ; 7, LMG 3977 ; 8, s NCIMB 9881; 9, NCIMB 9882; 10, NCIMB 11068; 11, s NCIMB 11069; 12, CIP 106281 ; 13, ACM 1685 ; 14, DSM 6462 ; M, DNA molecular weight marker XVII (Roche); M1, 20 bp DNA ladder (Takara).


ARDRA dendrogram showing phylogenetic relationships between some members of the family . [PDF](38 KB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error