A reductively dehalogenating, strictly anaerobic, sulfate-reducing bacterium, designated strain AA1, was isolated from the marine sponge collected in the Mediterranean Sea and was characterized phenotypically and phylogenetically. Cells of strain AA1 were Gram-negative, short, curved rods. Growth of strain AA1 was observed between 20 and 37 °C (optimally at 28 °C) at pH 7–8. NaCl was required for growth; optimum growth occurred in the presence of 25 g NaCl l. Growth occurred with lactate, propionate, pyruvate, succinate, benzoate, glucose and sodium citrate as electron donors and carbon sources and either sulfate or 2-bromophenol as electron acceptors, but not with acetate or butyrate. Strain AA1 was able to dehalogenate several different bromophenols, and 2- and 3-iodophenol, but not monochlorinated or fluorinated phenols. Lactate, pyruvate, fumarate and malate were not utilized without an electron acceptor. The G+C content of the genomic DNA was 58.5 mol%. The predominant cellular fatty acids were C, iso-C, C 3-OH, anteiso-C, C, C 7 and C 7. Phylogenetic analysis based on 16S rRNA gene sequence comparisons placed the novel strain within the class . Strain AA1 was related most closely to the type strains of (96 % 16S rRNA gene sequence similarity), (95 %) and (95 %). Based on its phenotypic, physiological and phylogenetic characteristics, strain AA1 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is AA1 (=DSM 17682 =ATCC BAA-1256).


Article metrics loading...

Loading full text...

Full text loading...



  1. Ahn, Y.-B., Rhee, S.-K., Fennell, D. E., Kerkhof, L. J., Hentschel, U. & Häggblom, M. M.(2003). Reductive dehalogenation of haloaromatics by microorganisms associated with the marine sponge Aplysina aerophoba. Appl Environ Microbiol 69, 4159–4166.[CrossRef] [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  3. Ashworth, R. B. & Cormier, M. J.(1967). Isolation of 2,6-dibromophenol from the marine hemichordate, Balanoglossus biminiensis. Science 155, 1558–1559.[CrossRef] [Google Scholar]
  4. Baker, J. T. & Duke, C. C.(1973). Isolation from the hypobranchial glands of marine molluscs of 6-bromo-2,2-dimethylthioindolin-3-one and 6-bromo-2-methylthioindoleninone as alternative precursors to Tyrian purple. Tetrahedron Lett 14, 2481–2482.[CrossRef] [Google Scholar]
  5. Boyle, A. W., Phelps, C. D. & Young, L. Y.(1999). Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol. Appl Environ Microbiol 65, 1133–1140. [Google Scholar]
  6. Bozzola, J. J. & Russell, L. D.(1992).Electron Microscopy. Principles and Techniques for Biologists. Boston: Jones and Bartlett.
  7. Bradford, M. M.(1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef] [Google Scholar]
  8. Breznak, J. A. & Costilow, R. N.(1994). Physicochemical factors in growth. In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  9. Ebel, R., Brenzinger, M., Kunze, A., Gross, H. J. & Proksch, P.(1997). Wound activation of protoxins in marine sponge Aplysina aerophoba. J Chem Ecol 23, 1451–1462.[CrossRef] [Google Scholar]
  10. Faulkner, D. J.(1977). Interesting aspects of marine natural products chemistry. Tetrahedron 33, 1421–1443.[CrossRef] [Google Scholar]
  11. Felsenstein, J.(1993).phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  12. Fennell, D. E., Rhee, S.-K., Ahn, Y.-B., Häggblom, M. M. & Kerkhof, L. J.(2004). Detecting the dehalogenating microorganism in a sulfidogenic, 2-bromophenol-utilizing enrichment by T-RFLP fingerprinting of ribosomes. Appl Environ Microbiol 70, 1169–1175.[CrossRef] [Google Scholar]
  13. Fielman, K. T., Woodin, S. A., Walla, M. D. & Lincoln, D. E.(1999). Widespread occurrence of natural halogenated organics among temperate marine infauna. Mar Ecol Prog Ser 181, 1–12.[CrossRef] [Google Scholar]
  14. Friedrich, M. W.(2002). Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol 184, 278–289.[CrossRef] [Google Scholar]
  15. Garson, M. J., Zimmermann, M. P., Battershill, C. N., Holden, J. L. & Murphy, P. T.(1994). The distribution of brominated long-chain fatty acids in sponge and symbiont cell types from the tropical marine sponge Amphimedon terpenensis. Lipids 29, 509–516.[CrossRef] [Google Scholar]
  16. Gribble, G. W.(1999). The diversity of naturally occurring organobromine compounds. Chem Soc Rev 28, 335–346.[CrossRef] [Google Scholar]
  17. Häggblom, M. M. & Young, L. Y.(1995). Anaerobic degradation of halogenated phenols by sulfate-reducing consortia. Appl Environ Microbiol 61, 1546–1550. [Google Scholar]
  18. Hayt, M. A.(1981).Fixation for Electron Microscopy. New York. Academic Press.
  19. Hentschel, U., Schmid, M., Wagner, M., Fieseler, L., Gernert, C. & Hacker, J.(2001). Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35, 305–312.[CrossRef] [Google Scholar]
  20. Hentschel, U., Fieseler, L., Wehrl, M., Gernert, C., Steinert, M. & Hacker, J.(2003). Microbial diversity of marine sponges. In Sponges (Porifera) (Progress in Molecular and Subcellular Biology/Marine Molecular Biotechnology), pp. 59–88. Edited by W. E. G. Müller. Berlin & Heidelberg: Springer.
  21. King, G. M.(1986). Inhibition of microbial activity in marine sediments by a bromophenol from a hemichordate. Nature 323, 257–259.[CrossRef] [Google Scholar]
  22. Knoblauch, C., Sahm, K. & Jørgensen, B. B.(1999). Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Bacteriol 49, 1631–1643.[CrossRef] [Google Scholar]
  23. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. New York: Wiley.
  24. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  25. Meyer, B. & Kuever, J.(2007). Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5′-phosphosulfate (APS) reductase from sulfate-reducing prokaryotes – origin and evolution of the dissimilatory sulfate-reduction pathway. Microbiology 153, 2026–2044.[CrossRef] [Google Scholar]
  26. Monserrate, E. & Häggblom, M. M.(1997). Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions. Appl Environ Microbiol 63, 3911–3915. [Google Scholar]
  27. Murray, R. G. E., Doetsch, R. N. & Robinow, C. F.(1994). Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  28. Norte, M. & Fernández, J. J.(1987). Isolation and synthesis of aplysinadiene, a new rearranged dibromotyrosine derivative from Aplysina aerophoba. Tetrahedron Lett 28, 1693–1696.[CrossRef] [Google Scholar]
  29. Sahm, K., Knoblauch, C. & Amann, R.(1999). Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine arctic sediments. Appl Environ Microbiol 65, 3976–3981. [Google Scholar]
  30. Schmitz, F. J. & Gopichand, Y.(1978). (7E, 13Ξ, 15Z)-14,16-Dibromo-7,13,15-hexadecatrien-5-ynoic acid. A novel dibromo acetylenic acid from the marine sponge Xestospongia muta. Tetrahedron Lett 19, 3637–3640.[CrossRef] [Google Scholar]
  31. Song, B., Palleroni, N. J., Kerkhof, L. J. & Häggblom, M. M.(2001). Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int J Syst Evol Microbiol 51, 589–602. [Google Scholar]
  32. Steward, C. C., Dixon, T. C., Chen, Y. P. & Lovell, C. R.(1995). Enrichment and isolation of a reductively debrominating bacterium from the burrow of a bromometabolite-producing marine hemichordate. Can J Microbiol 41, 637–642.[CrossRef] [Google Scholar]
  33. Sun, B., Cole, J. R., Sanford, R. A. & Tiedje, J. M.(2000). Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol. Appl Environ Microbiol 66, 2408–2413.[CrossRef] [Google Scholar]
  34. Suzuki, D., Ueki, A., Amaishi, A. & Ueki, K.(2008).Desulfoluna butyratoxydans gen. nov., sp. nov., a novel Gram-negative, butyrate-oxidizing, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int J Syst Evol Microbiol 58, 826–832.[CrossRef] [Google Scholar]
  35. Taylor, J. & Parkes, R. J.(1983). The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. J Gen Microbiol 129, 3303–3309. [Google Scholar]
  36. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  37. Turon, X., Becerro, M. A. & Uriz, M. J.(2000). Distribution of brominated compounds within the sponge Aplysina aerophoba: coupling of X-ray microanalysis with cryofixation techniques. Cell Tissue Res 301, 311–322.[CrossRef] [Google Scholar]
  38. Utkina, N. K., Denisenko, V. A., Scholokova, O. V., Virovaya, M. V., Gerasimenko, A. V., Popov, D. Y., Krasokhin, V. B. & Popov, A. M.(2001). Spongiadioxins A and B, two new polybrominated dibenzo-p-dioxins from an Australian marine sponge Dysidea dendyi. J Nat Prod 64, 151–153.[CrossRef] [Google Scholar]
  39. Watson, J., Matsui, G. Y., Leaphart, A., Wiegel, J., Rainey, F. A. & Lovell, C. R.(2000). Reductively debrominating strains of Propionigenium maris from burrows of bromophenol-producing marine infauna. Int J Syst Evol Microbiol 50, 1035–1042.[CrossRef] [Google Scholar]
  40. Weiss, B., Ebel, R., Elbrächter, M., Kirchner, M. & Proksch, P.(1996). Defense metabolites from the marine sponge Verongia aerophoba. Biochem Syst Ecol 24, 1–12.[CrossRef] [Google Scholar]
  41. White, R. H. & Hager, L. P.(1977). Occurrence of fatty acid chlorohydrins in jellyfish lipids. Biochemistry 16, 4944–4948.[CrossRef] [Google Scholar]

Data & Media loading...


T-RFLP electropherogram analysis of a sponge enrichment on bromophenols compared to a pure culture of strain AA1 .


Fatty acid compositions of the sponge-associated bacterium strain AA1 and type strains of related and species. [PDF](60 KB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error