A yellow-pigmented, hexachlorocyclohexane (HCH)-degrading bacterium, strain IP26, was isolated from an HCH dumpsite and subjected to a polyphasic analysis in order to determine its taxonomic position. Strain IP26 showed maximum 16S rRNA gene sequence similarity with Sp+ (98.5 %), UT26 (98.4 %) and B90A (98.2 %). Phylogenetic analysis based on 16S rRNA gene sequences also showed that strain IP26 formed a cluster with these three HCH-degrading strains. Chemotaxonomic data (major polyamine, spermidine; major quinone, ubiquinone with ten isoprene units; major polar lipids, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, diphosphatidylglycerol, phosphotidylcholine; and presence of 2-hydroxy fatty acid) supported inclusion of strain IP26 in the genus . However, the results of DNA–DNA hybridization and morphological and biochemical tests clearly allowed phenotypic and genotypic differentiation of strain IP26 from recognized species of the genus Strain IP26 thus represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is IP26 (=MTCC8598 =CCM 7432).


Article metrics loading...

Loading full text...

Full text loading...



  1. Arden-Jones, M. P., McCarthy, A. J. & Cross, T.(1979). Taxonomic and serological studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula. J Gen Microbiol 115, 343–354.[CrossRef] [Google Scholar]
  2. Beiss, U.(1964). Zur papierchromatographischen Auftrennung von Pflanzenlipiden. J Chromatogr 13, 104–110 (in German).[CrossRef] [Google Scholar]
  3. Busse, H.-J. & Auling, G.(1988). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11, 1–8.[CrossRef] [Google Scholar]
  4. Busse, H.-J., Kämpfer, P. & Denner, E. B. M.(1999). Chemotaxonomic characterization of Sphingomonas. J Ind Microbiol Biotechnol 23, 242–251.[CrossRef] [Google Scholar]
  5. Collins, M. D. & Jones, D.(1980). Lipids in the classification and identification of coryneform bacteria containing peptidoglycan based on 2,4-diamino butyric acid (DAB). J Appl Bacteriol 48, 459–470.[CrossRef] [Google Scholar]
  6. Collins, C. H., Lyne, P. M. & Grange, J. M.(1989).Microbiological Methods, 6th edn. London: Butterworth.
  7. Consden, R. & Gordon, A. H.(1948). Effect of salt on partition chromatograms. Nature 162, 180–181.[CrossRef] [Google Scholar]
  8. Dadhwal, M., Singh, A., Prakash, O., Gupta, S. K., Kumari, K., Sharma, P., Jit, S., Verma, M., Holliger, C. & Lal, R.(2009). Proposal of biostimulation for hexachlorocyclohexane (HCH)-decontamination and characterization of culturable bacterial community from high-dose point HCH-contaminated soils. J Appl Microbiol 106, 381–392.[CrossRef] [Google Scholar]
  9. Dittmer, J. C. F. & Lester, R. L.(1964). A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 15, 126–127. [Google Scholar]
  10. Dogra, C., Raina, V., Pal, R., Suar, M., Lal, S., Gartemann, K. H., Holliger, C., van der Meer, J. R. & Lal, R.(2004). Organization of lin genes and IS6100 among different strains of hexachlorcyclohexane degrading Sphingomonas paucimobilis strains: evidence for horizontal transfer. J Bacteriol 186, 2225–2235.[CrossRef] [Google Scholar]
  11. Felsenstein, J.(1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  12. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  13. Fitch, W. M.(1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef] [Google Scholar]
  14. Gordon, R. E., Barnett, D. A., Handerhan, J. E. & Pang, C. H.-N.(1974).Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24, 54–63.[CrossRef] [Google Scholar]
  15. Gunstone, F. D. & Jacobsberg, F. R.(1972). Fatty acids, part 35: the preparation and properties of the complete series of methyl epoxyoctadecanoates. Chem Phys Lipids 9, 26–64.[CrossRef] [Google Scholar]
  16. Gupta, S. K., Lal, D. & Lal, R.(2009).Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 59, 156–161.[CrossRef] [Google Scholar]
  17. Jacin, H. & Mishkin, A. R.(1965). Separation of carbohydrates on borate-impregnated silica gel G plates. J Chromatogr 18, 170–173. [Google Scholar]
  18. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  19. Kumar, M., Verma, M. & Lal, R.(2008).Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int J Syst Evol Microbiol 58, 861–865.[CrossRef] [Google Scholar]
  20. Kuykendall, L. D., Roy, M. A. O., Neill, J. J. & Devine, T. E.(1988). Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef] [Google Scholar]
  21. Lal, R., Dogra, C., Malhotra, S., Sharma, P. & Pal, R.(2006). Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads. Trends Biotechnol 24, 121–130.[CrossRef] [Google Scholar]
  22. McCarthy, A. J. & Cross, T.(1984). A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol 130, 5–25. [Google Scholar]
  23. Miller, L. T.(1982). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586. [Google Scholar]
  24. Pal, R., Bala, S., Dadhwal, M., Kumar, M., Dhingra, G., Prakash, O., Prabagaran, S. R., Shivaji, S., Cullum, J. & other authors(2005). Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55, 1965–1972.[CrossRef] [Google Scholar]
  25. Prakash, O. & Lal, R.(2006). Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int J Syst Evol Microbiol 56, 2147–2152.[CrossRef] [Google Scholar]
  26. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  27. Singh, A. & Lal, R.(2009). Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 59, 162–166.[CrossRef] [Google Scholar]
  28. Takeuchi, M., Hamana, K. & Hiraishi, A.(2001). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51, 1405–1417. [Google Scholar]
  29. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  30. Tindall, B. J.(1990a). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef] [Google Scholar]
  31. Tindall, B. J.(1990b). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef] [Google Scholar]
  32. Wagner, H., Horhammer, L. & Wolff, P.(1961). Dünnschicht-chromatographie von Phosphatiden und Glykolipiden. Biochem Z 334, 175–184 (in German). [Google Scholar]
  33. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  34. Willett, K. L., Ulrich, E. M. & Hites, R. A.(1998). Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32, 2197–2207.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 12, pp. 3140 - 3144

Supplementary data [ PDF] (265KB), containing:

Graphs showing degradation of α-, β-, γ- and δ-HCH (5 µg ml ) by strain IP26 .

Southern blot hybridization of I-digested genomic DNA of strain IP26 with [α- P]dATP-labelled probe of .

Southern blot hybridization of HI-digested genomic DNA of strain IP26 with [α- P]dATP-labelled probe of IS .

Polar lipid profile of IP26 after two-dimensional thin layer chromatography and detection with primulin.

Cellular fatty acid profiles of species of the genus used in the study.

DNA–DNA hybridization of strain IP26 with phylogenetically close members of the genus .

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error