1887

Abstract

A novel strictly anaerobic, thermophilic, sulfur-reducing bacterium, designated PH1209, was isolated from an East Pacific Rise hydrothermal vent (1 ° N) sample and studied using a polyphasic taxonomic approach. Cells were Gram-negative, motile rods (approx. 1.60×0.40 μm) with a single polar flagellum. Strain PH1209 grew at temperatures between 33 and 65 °C (optimum 60 °C), from pH 5.0 to 8.0 (optimum 6.0–6.5), and between 2 and 4 % (w/v) NaCl (optimum 3 %). Cells grew chemolithoautotrophically with H as an energy source, S as an electron acceptor and CO as a carbon source. Strain PH1209 was also able to use peptone and yeast extract as carbon sources. The G+C content of the genomic DNA was 35 mol%. Phylogenetic analyses based on 16S rRNA gene sequencing showed that strain PH1209 fell within the order , in the class . Comparative 16S rRNA gene sequence analysis indicated that strain PH1209 belonged to the genus and shared 97.2 and 98.7 % 16S rRNA gene sequence identity, respectively, with the type strains of and . It is proposed, from the polyphasic evidence, that the strain represents a novel species, sp. nov.; the type strain is PH1209 (=DSM 21157=JCM 15390).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.005454-0
2009-06-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/6/1310.html?itemId=/content/journal/ijsem/10.1099/ijs.0.005454-0&mimeType=html&fmt=ahah

References

  1. Alain, K., Querellou, J., Lesongeur, F., Pignet, P., Crassous, P., Raguénès, G., Cueff, V. & Cambon-Bonavita, M. A. ( 2002; ). Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52, 1317–1323.[CrossRef]
    [Google Scholar]
  2. Alain, K., Zbinden, M., Le Bris, N., Lesongeur, F., Quérellou, J., Gaill, F. & Cambon-Bonavita, M.-A. ( 2004; ). Early steps in microbial colonization processes at deep-sea hydrothermal vents. Environ Microbiol 6, 227–241.[CrossRef]
    [Google Scholar]
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  4. Campbell, B. J., Jeanthon, C., Kostka, J. E., Luther, G. W., III & Cary, S. C. ( 2001; ). Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67, 4566–4572.[CrossRef]
    [Google Scholar]
  5. Campbell, B. J., Summers Engel, A., Porter, M. L. & Takai, K. ( 2006; ). The versatile ϵ-proteobacteria: key players in sulphidic habitats. Nature Rev Microbiol 4, 458–468.[CrossRef]
    [Google Scholar]
  6. Cord-Ruwisch, R. ( 1985; ). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4, 33–36.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  9. Galtier, N., Gouy, M. & Gautier, C. ( 1996; ). seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12, 543–548.
    [Google Scholar]
  10. Garrity, G. M., Bell, J. A. & Lilburn, T. ( 2005a; ). Class V. Epsilonproteobacteria class. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), p. 1145. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  11. Garrity, G. M., Bell, J. A. & Lilburn, T. ( 2005b; ). Order I. Campylobacterales ord. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), p. 1145. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  12. Garrity, G. M., Bell, J. A. & Lilburn, T. ( 2006; ). Epsilonproteobacteria class. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, Validation List no. 107. Int J Syst Evol Microbiol 56, 1–6.[CrossRef]
    [Google Scholar]
  13. Inagaki, F., Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. ( 2003; ). Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ϵ-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53, 1801–1805.[CrossRef]
    [Google Scholar]
  14. Longnecker, K. & Reysenbach, A.-L. ( 2001; ). Expansion of the geographic distribution of a novel lineage of ϵ-Proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol Ecol 35, 287–293.
    [Google Scholar]
  15. López-Garcia, P., Gaill, F. & Moreira, D. ( 2002; ). Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environ Microbiol 4, 204–215.[CrossRef]
    [Google Scholar]
  16. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  17. Miroshnichenko, M. L., Kostrikina, N. A., L'Haridon, S., Jeanthon, C., Hippe, H., Stackebrandt, E. & Bonch-Osmolovskaya, E. A. ( 2002; ). Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing ϵ-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52, 1299–1304.[CrossRef]
    [Google Scholar]
  18. Miroshnichenko, M. L., L'Haridon, S., Schumann, P., Spring, S., Bonch-Osmolovskaya, E. A., Jeanthon, C. & Stackebrandt, E. ( 2004; ). Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class ‘Epsilonproteobacteria’ isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 54, 41–45.[CrossRef]
    [Google Scholar]
  19. Moussard, H., Corre, E., Cambon-Bonavita, M.-A., Fouquet, Y. & Jeanthon, C. ( 2006; ). Novel uncultured Epsilonproteobacteria dominate a filamentous sulphur mat from the 1 ° N hydrothermal vent field, East Pacific Rise. FEMS Microbiol Ecol 58, 449–463.[CrossRef]
    [Google Scholar]
  20. Polz, M. F. & Cavanaugh, C. M. ( 1995; ). Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Natl Acad Sci U S A 92, 7232–7236.[CrossRef]
    [Google Scholar]
  21. Saitou, N. & Nei, M. ( 1987; ). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  22. Smith, J. L., Campbell, B. J., Hanson, T. E., Zhang, C. L. & Cary, S. C. ( 2008; ). Nautilia profundicola sp. nov., a thermophilic, sulfur-reducing epsilonproteobacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 58, 1598–1602.[CrossRef]
    [Google Scholar]
  23. Stackebrandt, E. & Ebers, J. ( 2006; ). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33, 152–155.
    [Google Scholar]
  24. Takai, K., Inagaki, F., Nakagawa, S., Hirayama, H., Nunoura, T., Sako, Y., Nealson, K. H. & Horikoshi, K. ( 2003; ). Isolation and phylogenetic diversity of members of previously uncultivated ϵ-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218, 167–174.
    [Google Scholar]
  25. Takai, K., Hirayama, H., Nakagawa, T., Suzuki, Y., Nealson, K. H. & Horikoshi, K. ( 2005; ). Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int J Syst Evol Microbiol 55, 183–189.[CrossRef]
    [Google Scholar]
  26. Takai, K., Suzuki, M., Nakagawa, S., Miyazaki, M., Suzuki, Y., Inagaki, F. & Horikoshi, K. ( 2006; ). Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 56, 1725–1733.[CrossRef]
    [Google Scholar]
  27. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  28. Voordeckers, J. W., Starovoytov, V. & Vetriani, C. ( 2005; ). Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55, 773–779.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.005454-0
Loading
/content/journal/ijsem/10.1099/ijs.0.005454-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 1310 - 1315

Scanning electron micrographs of cells of strain PH1209 in the mid-exponential phase of growth.

Maximum growth rate (h ) of Nautilia abyssi sp. nov. PH1209 at varying temperatures, pH and NaCl concentrations.

Combined file [ PDF] 142 KB



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error