1887

Abstract

A Gram-negative, aerobic, neutrophilic, rod-shaped bacterium, designated strain CN85, was isolated from a sediment sample collected from the East China Sea and was subjected to a polyphasic taxonomic characterization. This isolate grew in the presence of 0.5–6.0 % (w/v) NaCl and at 20–40 °C; optimum growth was observed with 3 % (w/v) NaCl and at 35 °C. Chemotaxonomic analysis showed that Q-8 was the predominant respiratory quinone and that iso-C, iso-C 3-OH, iso-C 9, iso-C, iso-C and C were the major fatty acids. The G+C content of the genomic DNA was 57.8 mol%. On the basis of 16S rRNA gene sequence analysis, the isolate was affiliated to the genus . Strain CN85 exhibited most phylogenetic affinity with respect to the type strain of (97.0 % sequence similarity) and showed less than 97 % sequence similarity with respect to other described species with known 16S rRNA gene sequences. The DNA–DNA hybridization between strain CN85 and JCM 12187 was 44 %. On the basis of phenotypic and genotypic data, strain CN85 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CN85 (=CGMCC 1.7063 =JCM 15145).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.004531-0
2009-03-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/3/545.html?itemId=/content/journal/ijsem/10.1099/ijs.0.004531-0&mimeType=html&fmt=ahah

References

  1. Chun, J., Lee, J. H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  2. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  3. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  4. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  5. González, J. M., Mayer, F., Moran, M. A., Hodson, R. E. & Whitman, W. B. ( 1997; ). Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47, 369–376.[CrossRef]
    [Google Scholar]
  6. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  7. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  8. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  9. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E. ( 1988; ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef]
    [Google Scholar]
  10. Leifson, E. ( 1963; ). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184.
    [Google Scholar]
  11. Mata, J. A., Martínez-Cánovas, J., Quesada, E. & Béjar, V. ( 2002; ). A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef]
    [Google Scholar]
  12. Mesbah, M. & Whitman, W. B. ( 1989; ). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479, 297–306.[CrossRef]
    [Google Scholar]
  13. Mikhailov, V. V., Romanenko, L. A. & Ivanova, E. P. ( 2006; ). The genus Alteromonas and related proteobacteria. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 6, pp. 597–645. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  14. Miyazaki, M., Nogi, Y., Ohta, Y., Hatada, Y., Fujiwara, Y., Ito, S. & Horikoshi, K. ( 2008; ). Microbulbifer agarilyticus sp. nov. and Microbulbifer thermotolerans sp. nov., agar-degrading bacteria isolated from deep-sea sediment. Int J Syst Evol Microbiol 58, 1128–1133.[CrossRef]
    [Google Scholar]
  15. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  16. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  17. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  18. Xu, X.-W., Wu, Y.-H., Zhou, Z., Wang, C.-S., Zhou, Y.-G., Zhang, H.-B., Wang, Y. & Wu, M. ( 2007; ). Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57, 1619–1624.[CrossRef]
    [Google Scholar]
  19. Xu, X.-W., Wu, Y.-H., Wang, C.-S., Yang, J.-Y., Oren, A. & Wu, M. ( 2008; ). Marinobacter pelagius sp. nov., a moderately halophilic bacterium. Int J Syst Evol Microbiol 58, 637–640.[CrossRef]
    [Google Scholar]
  20. Yoon, J. H., Kim, I. G., Shin, D. Y., Kang, K. H. & Park, Y. H. ( 2003a; ). Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 53, 53–57.[CrossRef]
    [Google Scholar]
  21. Yoon, J. H., Kim, H., Kang, K. H., Oh, T. K. & Park, Y. H. ( 2003b; ). Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov. Int J Syst Evol Microbiol 53, 1357–1361.[CrossRef]
    [Google Scholar]
  22. Yoon, J. H., Kim, I. G., Oh, T. K. & Park, Y. H. ( 2004; ). Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. Int J Syst Evol Microbiol 54, 1111–1116.[CrossRef]
    [Google Scholar]
  23. Yoon, J. H., Jung, S. Y., Kang, S. J. & Oh, T. K. ( 2007; ). Microbulbifer celer sp. nov., isolated from a marine solar saltern of the Yellow Sea in Korea. Int J Syst Evol Microbiol 57, 2365–2369.[CrossRef]
    [Google Scholar]
  24. ZoBell, C. E. ( 1941; ). Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4, 42–75.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.004531-0
Loading
/content/journal/ijsem/10.1099/ijs.0.004531-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 545 - 549

Fatty acid compositions (%) of strain CN85 and the type strains of related species

Phenotypic characteristics that serve to differentiate strain CN85 from JCM 12187

[PDF file of Supplementary Tables S1 and S2](41 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error