1887

Abstract

A Gram-positive, non-motile, spherical, red-pigmented and facultatively anaerobic bacterium, designated strain I-0, was isolated from a sand sample of the Gobi desert in Xinjiang Autonomous Region, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that this isolate represents a novel member of the genus , with low sequence similarities (<94 %) to recognized species. The major cellular fatty acids were C 7 and C. Its polar lipid profile contained several unidentified glycolipids, phosphoglycolipids, phospholipids, pigments and an aminophospholipid. The peptidoglycan type was Orn–Gly (A3) and the predominant respiratory quinone was MK-8. The DNA G+C content was 65.4 mol%. DNA–DNA relatedness between strain I-0 and ACCC 10492 was 37 %. The strain was shown to be extremely resistant to gamma radiation (>15 kGy) and UV light (>600 J m). On the basis of the phylogenetic, chemotaxonomic and phenotypic data presented, strain I-0 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is I-0 (=DSM 21396 =CGMCC 1.7299).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.004523-0
2009-06-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/6/1513.html?itemId=/content/journal/ijsem/10.1099/ijs.0.004523-0&mimeType=html&fmt=ahah

References

  1. Anderson, A. W., Nordan, H. C., Cain, R. F., Parrish, G. & Duggan, D. ( 1956; ). Studies on a radioresistant Micrococcus. I. Isolation, morphology, cultural, characteristics, and resistance to gamma radiation. Food Technol 10, 575–577.
    [Google Scholar]
  2. Brooks, B. W. & Murray, R. G. E. ( 1981; ). Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 31, 353–360.[CrossRef]
    [Google Scholar]
  3. Butte, W. ( 1983; ). Rapid method for the determination of fatty acid profiles from fats and oils using trimethylsulphonium hydroxide for transesterification. J Chromatogr A 261, 142–145.[CrossRef]
    [Google Scholar]
  4. Cowan, S. T. ( 1974; ). Cowan and Steel's Manual for the Identification of Medical Bacteria, 2nd edn. London: Cambridge University Press.
  5. de Groot, A., Chapon, V., Servant, P., Christen, R., Fischer-Le Saux, M., Sommer, S. & Heulin, T. ( 2005; ). Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 55, 2441–2446.[CrossRef]
    [Google Scholar]
  6. Embley, T. M., O'Donnell, A. G., Watt, R. & Rostron, J. ( 1987; ). Lipid and cell wall amino acid composition in the classification of members of the genus Deinococcus. Syst Appl Microbiol 10, 20–27.[CrossRef]
    [Google Scholar]
  7. Ezaki, T., Hashimoto, Y., Takeuchi, N., Yamamoto, H., Liu, S.-L., Miura, H., Matsui, K. & Yabuuchi, E. ( 1988; ). Simple genetic method to identify viridans group streptococci by colorimetric dot hybridization and fluorometric hybridization in microdilution wells. J Clin Microbiol 26, 1708–1713.
    [Google Scholar]
  8. Ferreira, A. C., Nobre, M. F., Rainey, F. A., Silva, M. T., Wait, R., Burghardt, J., Chung, A. P. & da Costa, M. S. ( 1997; ). Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47, 939–947.[CrossRef]
    [Google Scholar]
  9. Hasegawa, T., Takizawa, M. & Tanida, S. ( 1983; ). A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29, 319–322.[CrossRef]
    [Google Scholar]
  10. Lai, W.-A., Kämpfer, P., Arun, A. B., Shen, F.-T., Huber, B., Rekha, P. D. & Young, C.-C. ( 2006; ). Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. Int J Syst Evol Microbiol 56, 787–791.[CrossRef]
    [Google Scholar]
  11. Liu, X., Wu, J., Zhang, W., Ping, S., Lu, W., Chen, M. & Lin, M. ( 2008; ). Resistance of Deinococcus radiodurans to mutagenesis is facilitated by pentose phosphate pathway in the mutS1 mutant background. Curr Microbiol 57, 66–71.[CrossRef]
    [Google Scholar]
  12. Makarova, K. S., Aravind, L., Wolf, Y. I., Tatusov, R. L., Minton, K. W., Koonin, E. V. & Daly, M. J. ( 2001; ). Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 65, 44–79.[CrossRef]
    [Google Scholar]
  13. Makarova, K. S., Omelchenko, M. V., Gaidamakova, E. K., Matrosova, V. Y., Vasilenko, A., Zhai, M., Lapidus, A., Copeland, A., Kim, E. & other authors ( 2007; ). Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS One 2, e955 [CrossRef]
    [Google Scholar]
  14. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  15. Owen, R. J. & Lapage, S. P. ( 1976; ). The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxonomic implications. J Appl Bacteriol 41, 335–340.[CrossRef]
    [Google Scholar]
  16. Oyaizu, H., Stackebrandt, E., Schleifer, K. H., Ludwig, W., Pohla, H., Ito, H., Hirata, A., Oyaizu, Y. & Komagata, K. ( 1987; ). A radiation-resistant rod-shaped bacterium, Deinobacter grandis gen. nov., sp. nov., with peptidoglycan containing ornithine. Int J Syst Bacteriol 37, 62–67.[CrossRef]
    [Google Scholar]
  17. Rainey, F. A., Ray, K., Ferreira, M., Gatz, B. Z., Nobre, M. F., Bagaley, D., Rash, B. A., Park, M. J., Earl, A. M. & other authors ( 2005; ). Extensive diversity of ionizing-radiation-resistant bacteria recovered from a Sonoran Desert soil and the description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71, 5225–5235.[CrossRef]
    [Google Scholar]
  18. Rainey, F. A., Ferreira, M., Nobre, M. F., Ray, K., Bagaley, D., Earl, A. M., Battista, J. R., Gómez-Silva, B., McKay, C. P. & da Costa, M. S. ( 2007; ). Deinococcus peraridilitoris sp. nov., isolated from a coastal desert. Int J Syst Evol Microbiol 57, 1408–1412.[CrossRef]
    [Google Scholar]
  19. Sawabe, T., Makino, H., Tatsumi, M., Nakano, K., Tajima, K., Iqbal, M. M., Yumoto, L., Ezura, Y. & Christen, R. ( 1998; ). Pseudoalteromonas bacteriolytica sp. nov., a marine bacterium that is the causative agent of red spot disease of Laminaria japonica. Int J Syst Bacteriol 48, 769–774.[CrossRef]
    [Google Scholar]
  20. Shashidhar, R. & Bandekar, J. R. ( 2006; ). Deinococcus mumbaiensis sp. nov., a radiation-resistant pleomorphic bacterium isolated from Mumbai, India. FEMS Microbiol Lett 254, 275–280.[CrossRef]
    [Google Scholar]
  21. Suresh, K., Reddy, G. S. N., Sengupta, S. & Shivaji, S. ( 2004; ). Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54, 457–461.[CrossRef]
    [Google Scholar]
  22. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  23. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  24. Weon, H.-Y., Kim, B.-Y., Schumann, P., Son, J.-A, Jang, J., Go, S.-J. & Kwon, S.-W. ( 2007; ). Deinococcus cellulosilyticus sp. nov., isolated from air. Int J Syst Evol Microbiol 57, 1685–1688.[CrossRef]
    [Google Scholar]
  25. Zhang, Y.-Q., Sun, C.-H., Li, W.-J., Yu, L.-Y., Zhou, J.-Q., Zhang, Y.-Q., Xu, L.-H. & Jiang, C.-L. ( 2007; ). Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol 57, 370–375.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.004523-0
Loading
/content/journal/ijsem/10.1099/ijs.0.004523-0
Loading

Data & Media loading...

Supplements

Morphology of colonies of strain I-0 on a TGY agar plate. Captured by Olympus SZX7.

IMAGE

Morphology of cells of strain I-0 , captured by Hitachi S-570 scanning electron microscope. Bar, 2 µm.

IMAGE

Ultrastructure of strain I-0 grown in TGY medium. (a) Wall structure composed of four layers (L1–L4). Bar, 333 nm. (b) Division and a large electron-dense granule (D); arrowheads (A) indicate the form of the cell wall. Bar, 400 nm. (c) Cells in pairs, showing a large electron-dense granule (D), cell membrane (M) and cell wall (W). Bar, 250 nm.

IMAGE

[PDF file of Supplementary Fig. S4 and Supplementary Tables](70 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error