A novel methane-producing archaeon, designated strain HASU, was isolated from a lotus field. Cells were Gram-negative, non-motile, irregular cocci, 2–3 μm in diameter, and occurred singly. Growth was observed at 15–40 °C (optimum, 37 °C) and pH 6.5–7.5 (optimum, pH 7.0). The G+C content of the genomic DNA was 60.9 mol%. Strain HASU utilized ethanol, 1-propanol, 1-butanol, hydrogen and formate for growth and methane production. It converted ethanol to methane and acetate. Based on comparative 16S rRNA gene sequence analysis, strain HASU was shown to be affiliated with the genus . It was related most closely to the type strain of (96.1 % 16S rRNA gene sequence similarity). Based on phylogenetic analysis and phenotypic characteristics, strain HASU is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HASU (=NBRC 104120=JCM 15103=DSM 21041).


Article metrics loading...

Loading full text...

Full text loading...



  1. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R. & Stahl, D. A.(1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919–1925. [Google Scholar]
  2. Boone, D. R. & Whitman, W. B.(1988). Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38, 212–219.[CrossRef] [Google Scholar]
  3. Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M.(1999). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22, 434–444.[CrossRef] [Google Scholar]
  4. DeLong, E. F.(1992). Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89, 5685–5689.[CrossRef] [Google Scholar]
  5. Doetsch, R. N.(1981). Determinative methods of light microscopy. In Manual of Methods for General Bacteriology, pp. 21–33. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. H. Phillips. Washington, DC: American Society for Microbiology.
  6. Grahame, D. A. & Stadtman, T. C.(1993). Redox enzymes of methanogens: physicochemical properties of selected, purified oxidoreductases. In Methanogenesis, pp. 335–359. Edited by J. G. Ferry. New York: Chapman & Hall.
  7. Großkopf, R., Janssen, P. H. & Liesack, W.(1998). Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64, 960–969. [Google Scholar]
  8. Imachi, H., Sekiguchi, Y., Kamagata, Y., Ohashi, A. & Harada, H.(2000). Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66, 3608–3615.[CrossRef] [Google Scholar]
  9. Imachi, H., Sekiguchi, Y., Kamagata, Y., Hanada, S., Ohashi, A. & Harada, H.(2002).Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52, 1729–1735.[CrossRef] [Google Scholar]
  10. Imachi, H., Sekiguchi, Y., Kamagata, Y., Loy, A., Qiu, Y.-L., Hugenholtz, P., Kimura, N., Wagner, M., Ohashi, A. & Harada, H.(2006). Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl Environ Microbiol 72, 2080–2091.[CrossRef] [Google Scholar]
  11. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  12. Keswani, J. & Whitman, W. B.(2001). Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 51, 667–678. [Google Scholar]
  13. Lai, M.-C. & Chen, S.-S.(2001).Methanofollis aquaemaris sp. nov., a methanogen isolated from an aquaculture fish pond. Int J Syst Evol Microbiol 51, 1873–1880.[CrossRef] [Google Scholar]
  14. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  15. Nakagawa, S., Takai, K., Horikoshi, K. & Sako, Y.(2003).Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53, 863–869.[CrossRef] [Google Scholar]
  16. Sekiguchi, Y., Takahashi, H., Kamagata, Y., Ohashi, A. & Harada, H.(2001). In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl Environ Microbiol 67, 5740–5749.[CrossRef] [Google Scholar]
  17. Sekiguchi, Y., Imachi, H., Susilorukmi, A., Muramatsu, M., Ohashi, A., Harada, H., Hanada, S. & Kamagata, Y.(2006).Tepidanaerobacter syntrophicus gen. nov., sp. nov., an anaerobic, moderately thermophilic, syntrophic alcohol- and lactate-degrading bacterium isolated from thermophilic digested sludges. Int J Syst Evol Microbiol 56, 1621–1629.[CrossRef] [Google Scholar]
  18. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  19. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J.(1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703. [Google Scholar]
  20. Widdel, F.(1986). Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol 51, 1056–1062. [Google Scholar]
  21. Widdel, F. & Pfennig, N.(1981). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129, 395–400.[CrossRef] [Google Scholar]
  22. Widdel, F., Rouvière, P. E. & Wolf, R. S.(1988). Classification of secondary alcohol-utilizing methanogens including a new thermophilic isolate. Arch Microbiol 150, 477–481.[CrossRef] [Google Scholar]
  23. Wu, S.-Y., Chen, S.-S. & Lai, M.-C.(2005).Methanofollis formosanus sp. nov., isolated from a fish pond. Int J Syst Evol Microbiol 55, 837–842.[CrossRef] [Google Scholar]
  24. Zabel, H. P., König, H. & Winter, J.(1984). Isolation and characterization of a new coccoid methanogen, Methanogenium tatii, spec. nov. from a solfataric field on Mount Tatio. Arch Microbiol 137, 308–315.[CrossRef] [Google Scholar]
  25. Zellner, G. & Boone, D. R.(2001). Genus III. Methanofollis. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 253–255. Edited by D. R. Boone & R. W. Castenholz. New York: Springer.
  26. Zellner, G., Sleytr, U. B., Messner, P., Kneifel, H. & Winter, J.(1990).Methanogenium liminatans spec. nov., a new coccoid, mesophilic methanogen able to oxidize secondary alcohols. Arch Microbiol 153, 287–293.[CrossRef] [Google Scholar]
  27. Zellner, G., Boone, D. R., Keswani, J., Whitman, W. B., Woese, C. R., Hagelstein, A., Tindall, B. J. & Stackebrandt, E.(1999). Reclassification of Methanogenium tationis and Methanogenium liminatans as Methanofollis tationis gen. nov., comb. nov. and Methanofollis liminatans comb. nov. and description of a new strain of Methanofollis liminatans. Int J Syst Bacteriol 49, 247–255.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error