1887

Abstract

The diversity of bacteria associated with inflamed mucosa was investigated by culturing ileal samples from TNF mice on a selective medium containing mucin. Among eight isolates, two strains (Mt1B3 and Mt1B8) belonged to bacterial groups not yet cultured from the mouse intestine. Whereas strain Mt1B3 was identified as a member of the family and is closely related to species and DSM 13886, strain Mt1B8 was a novel bacterium. Based on phylogenetic analysis, strain Mt1B8 is a member of the family . The closest relatives with validly published names were , (<96 % similarity) and species (<92 %). With respect to and , the phylogenetic position of strain Mt1B8 was confirmed at the chemotaxonomic level by Fourier-transform infrared spectroscopic analysis. The major fatty acid of strain Mt1B8 is C (23.9 %). Menaquinones were monomethylated. DNA–DNA relatedness between strain Mt1B8 and DSM 18785 was 28 %. Strain Mt1B8 is a Gram-positive-staining rod that does not form spores and has a high DNA G+C content (64.2  mol%). Cells are aerotolerant but grow only under strictly anoxic conditions. They are sensitive to cefotaxime, clarithromycin, erythromycin, metronidazole, tetracycline, tobramycin and vancomycin. API and VITEK analysis showed the ability of strain Mt1B8 to convert a variety of amino acid derivatives. According to these findings, it is proposed to create a novel genus and species, gen. nov., sp. nov., to accommodate strain Mt1B8. The type strain of is Mt1B8 (=DSM 19490 =CCUG 54980).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.003087-0
2009-07-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/7/1805.html?itemId=/content/journal/ijsem/10.1099/ijs.0.003087-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. An, S. Y., Haga, T., Kasai, H., Goto, K. & Yokota, A. ( 2007; ). Sporosarcina saromensis sp. nov., an aerobic endospore-forming bacterium. Int J Syst Evol Microbiol 57, 1868–1871.[CrossRef]
    [Google Scholar]
  3. Andrews, J. M. ( 2007; ). BSAC methods for antimicrobial susceptibility testing (version 6). J Antimicrob Chemother 60, 20–41.[CrossRef]
    [Google Scholar]
  4. Apajalahti, J. H., Kettunen, H., Kettunen, A., Holben, W. E., Nurminen, P. H., Rautonen, N. & Mutanen, M. ( 2002; ). Culture-independent microbial community analysis reveals that inulin in the diet primarily affects previously unknown bacteria in the mouse cecum. Appl Environ Microbiol 68, 4986–4995.[CrossRef]
    [Google Scholar]
  5. Attebery, H. R. & Finegold, S. M. ( 1969; ). Combined screw-cap and rubber-stopper closure for Hungate tubes (pre-reduced anaerobically sterilized roll tubes and liquid media). Appl Microbiol 18, 558–561.
    [Google Scholar]
  6. Bibiloni, R., Simon, M. A., Albright, C., Sartor, B. & Tannock, G. W. ( 2005; ). Analysis of the large bowel microbiota of colitic mice using PCR/DGGE. Lett Appl Microbiol 41, 45–51.[CrossRef]
    [Google Scholar]
  7. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  8. Clavel, T. & Haller, D. ( 2007; ). Bacteria- and host-derived mechanisms to control intestinal epithelial cell homeostasis: implications for chronic inflammation. Inflamm Bowel Dis 13, 1153–1164.[CrossRef]
    [Google Scholar]
  9. Clavel, T., Henderson, G., Alpert, C. A., Philippe, C., Rigottier-Gois, L., Dore, J. & Blaut, M. ( 2005; ). Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Appl Environ Microbiol 71, 6077–6085.[CrossRef]
    [Google Scholar]
  10. Clavel, T., Henderson, G., Engst, W., Dore, J. & Blaut, M. ( 2006; ). Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol Ecol 55, 471–478.[CrossRef]
    [Google Scholar]
  11. Clavel, T., Lippman, R., Gavini, F., Dore, J. & Blaut, M. ( 2007; ). Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Syst Appl Microbiol 30, 16–26.[CrossRef]
    [Google Scholar]
  12. Cole, J. R., Chai, B., Marsh, T. L., Farris, R. J., Wang, Q., Kulam, S. A., Chandra, S., McGarrell, D. M., Schmidt, T. M. & other authors ( 2003; ). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31, 442–443.[CrossRef]
    [Google Scholar]
  13. Conte, M. P., Schippa, S., Zamboni, I., Penta, M., Chiarini, F., Seganti, L., Osborn, J., Falconieri, P., Borrelli, O. & Cucchiara, S. ( 2006; ). Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut 55, 1760–1767.[CrossRef]
    [Google Scholar]
  14. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  15. Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. ( 2004; ). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54, 1469–1476.[CrossRef]
    [Google Scholar]
  16. Dubos, R. J. & Schaedler, R. W. ( 1960; ). The effect of the intestinal flora on the growth rate of mice, and on their susceptibility to experimental infections. J Exp Med 111, 407–417.[CrossRef]
    [Google Scholar]
  17. Duck, L. W., Walter, M. R., Novak, J., Kelly, D., Tomasi, M., Cong, Y. & Elson, C. O. ( 2007; ). Isolation of flagellated bacteria implicated in Crohn's disease. Inflamm Bowel Dis 13, 1191–1201.[CrossRef]
    [Google Scholar]
  18. Eerola, E. & Lehtonen, O. P. ( 1988; ). Optimal data processing procedure for automatic bacterial identification by gas-liquid chromatography of cellular fatty acids. J Clin Microbiol 26, 1745–1753.
    [Google Scholar]
  19. Gevers, D., Cohan, F. M., Lawrence, J. G., Spratt, B. G., Coenye, T., Feil, E. J., Stackebrandt, E., Van de Peer, Y., Vandamme, P. & other authors ( 2005; ). Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3, 733–739.[CrossRef]
    [Google Scholar]
  20. Gregersen, T. ( 1978; ). Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5, 123–127.[CrossRef]
    [Google Scholar]
  21. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  22. Hatano, K., Nishii, T. & Kasai, H. ( 2003; ). Taxonomic re-evaluation of whorl-forming Streptomyces (formerly Streptoverticillium) species by using phenotypes, DNA–DNA hybridization and sequences of gyrB, and proposal of Streptomyces luteireticuli (ex Katoh and Arai 1957) corrig., sp. nov., nom. rev. Int J Syst Evol Microbiol 53, 1519–1529.[CrossRef]
    [Google Scholar]
  23. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  24. Kageyama, A., Benno, Y. & Nakase, T. ( 1999; ). Phylogenetic evidence for the transfer of Eubacterium lentum to the genus Eggerthella as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 49, 1725–1732.[CrossRef]
    [Google Scholar]
  25. Katakura, K., Lee, J., Rachmilewitz, D., Li, G., Eckmann, L. & Raz, E. ( 2005; ). Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J Clin Invest 115, 695–702.[CrossRef]
    [Google Scholar]
  26. Kontoyiannis, D., Pasparakis, M., Pizarro, T. T., Cominelli, F. & Kollias, G. ( 1999; ). Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10, 387–398.[CrossRef]
    [Google Scholar]
  27. Kummerle, M., Scherer, S. & Seiler, H. ( 1998; ). Rapid and reliable identification of food-borne yeasts by Fourier-transform infrared spectroscopy. Appl Environ Microbiol 64, 2207–2214.
    [Google Scholar]
  28. Kwon, S. W., Kim, B. Y., Song, J., Weon, H. Y., Schumann, P., Tindall, B. J., Stackebrandt, E. & Fritze, D. ( 2007; ). Sporosarcina koreensis sp. nov. and Sporosarcina soli sp. nov., isolated from soil in Korea. Int J Syst Evol Microbiol 57, 1694–1698.[CrossRef]
    [Google Scholar]
  29. Lau, S. K., Woo, P. C., Woo, G. K., Fung, A. M., Wong, M. K., Chan, K. M., Tam, D. M. & Yuen, K. Y. ( 2004; ). Eggerthella hongkongensis sp. nov. and Eggerthella sinensis sp. nov., two novel Eggerthella species, account for half of the cases of Eggerthella bacteremia. Diagn Microbiol Infect Dis 49, 255–263.[CrossRef]
    [Google Scholar]
  30. Ley, R. E., Backhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D. & Gordon, J. I. ( 2005; ). Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102, 11070–11075.[CrossRef]
    [Google Scholar]
  31. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. ( 2006; ). Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023.[CrossRef]
    [Google Scholar]
  32. Maiden, M. F. J. & Jones, J. G. ( 1984; ). A new filamentous, gliding bacterium, Filibacter limicola gen. nov. sp. nov., from lake sediment. J Gen Microbiol 130, 2943–2959.
    [Google Scholar]
  33. Manichanh, C., Rigottier-Gois, L., Bonnaud, E., Gloux, K., Pelletier, E., Frangeul, L., Nalin, R., Jarrin, C., Chardon, P. & other authors ( 2006; ). Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55, 205–211.[CrossRef]
    [Google Scholar]
  34. Maruo, T., Sakamoto, M., Ito, C., Toda, T. & Benno, Y. ( 2008; ). Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol 58, 1221–1227.[CrossRef]
    [Google Scholar]
  35. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  36. Minamida, K., Tanaka, M., Abe, A., Sone, T., Tomita, F., Hara, H. & Asano, K. ( 2006; ). Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine. J Biosci Bioeng 102, 247–250.[CrossRef]
    [Google Scholar]
  37. Minamida, K., Ota, K., Nishimukai, M., Tanaka, M., Abe, A., Sone, T., Tomita, F., Hara, H. & Asano, K. ( 2008; ). Asaccharobacter celatus gen. nov., sp. nov., isolated from rat caecum. Int J Syst Evol Microbiol 58, 1238–1240.[CrossRef]
    [Google Scholar]
  38. Moore, W. E. C. & Moore, L. V. H. ( 1986; ). Genus Eubacterium Prévot 1938, 294AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1353–1373. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  39. Oberreuter, H., Seiler, H. & Scherer, S. ( 2002; ). Identification of coryneform bacteria and related taxa by Fourier-transform infrared (FT-IR) spectroscopy. Int J Syst Evol Microbiol 52, 91–100.
    [Google Scholar]
  40. Pena, J. A., Li, S. Y., Wilson, P. H., Thibodeau, S. A., Szary, A. J. & Versalovic, J. ( 2004; ). Genotypic and phenotypic studies of murine intestinal lactobacilli: species differences in mice with and without colitis. Appl Environ Microbiol 70, 558–568.[CrossRef]
    [Google Scholar]
  41. Rhuland, L. E., Work, E., Denman, R. F. & Hoare, D. S. ( 1955; ). The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77, 4844–4846.[CrossRef]
    [Google Scholar]
  42. Salzman, N. H., de Jong, H., Paterson, Y., Harmsen, H. J., Welling, G. W. & Bos, N. A. ( 2002; ). Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology 148, 3651–3660.
    [Google Scholar]
  43. Santos, S. R. & Ochman, H. ( 2004; ). Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ Microbiol 6, 754–759.[CrossRef]
    [Google Scholar]
  44. Sartor, R. B. ( 2004; ). Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126, 1620–1633.[CrossRef]
    [Google Scholar]
  45. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  46. Schaeffer, A. B. & Fulton, M. D. ( 1933; ). A simplified method of staining endospores. Science 77, 194 [CrossRef]
    [Google Scholar]
  47. Schoefer, L., Mohan, R., Braune, A., Birringer, M. & Blaut, M. ( 2002; ). Anaerobic C-ring cleavage of genistein and daidzein by Eubacterium ramulus. FEMS Microbiol Lett 208, 197–202.[CrossRef]
    [Google Scholar]
  48. Schuppler, M., Lotzsch, K., Waidmann, M. & Autenrieth, I. B. ( 2004; ). An abundance of Escherichia coli is harbored by the mucosa-associated bacterial flora of interleukin-2-deficient mice. Infect Immun 72, 1983–1990.[CrossRef]
    [Google Scholar]
  49. Staneck, J. L. & Roberts, G. D. ( 1974; ). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28, 226–231.
    [Google Scholar]
  50. Swidsinski, A., Loening-Baucke, V., Lochs, H. & Hale, L. P. ( 2005; ). Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J Gastroenterol 11, 1131–1140.[CrossRef]
    [Google Scholar]
  51. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  52. Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R. & Gordon, J. I. ( 2006; ). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031.[CrossRef]
    [Google Scholar]
  53. Visuvanathan, S., Moss, M. T., Standord, J. L., Hermon-Taylor, J. & McFadden, J. J. ( 1989; ). Simple enzymatic method for isolation of DNA from diverse bacteria. J Microbiol Methods 10, 59–64.[CrossRef]
    [Google Scholar]
  54. Wade, W. G., Downes, J., Dymock, D., Hiom, S. J., Weightman, A. J., Dewhirst, F. E., Paster, B. J., Tzellas, N. & Coleman, B. ( 1999; ). The family Coriobacteriaceae: reclassification of Eubacterium exiguum (Poco et al. 1996) and Peptostreptococcus heliotrinreducens (Lanigan 1976) as Slackia exigua gen. nov., comb. nov. and Slackia heliotrinireducens gen. nov., comb. nov., and Eubacterium lentum (Prevot 1938) as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 49, 595–600.[CrossRef]
    [Google Scholar]
  55. Wang, X. L., Hur, H. G., Lee, J. H., Kim, K. T. & Kim, S. I. ( 2005; ). Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl Environ Microbiol 71, 214–219.[CrossRef]
    [Google Scholar]
  56. Wenning, M., Theilmann, V. & Scherer, S. ( 2006; ). Rapid analysis of two food-borne microbial communities at the species level by Fourier-transform infrared microspectroscopy. Environ Microbiol 8, 848–857.[CrossRef]
    [Google Scholar]
  57. Wenning, M., Scherer, S. & Naumann, D. ( 2008; ). Infrared spectroscopy in the identification of microorganisms. In Vibrational Spectroscopy for Medical Diagnosis, pp. 71–96. Edited by M. Diem, P. R. Griffith & J. M. Chalmers. Chichester: Wiley.
  58. Whiton, R. S., Lau, P., Morgan, S. L., Gilbart, J. & Fox, A. ( 1985; ). Modifications in the alditol acetate method for analysis of muramic acid and other neutral and amino sugars by capillary gas chromatography-mass spectrometry with selected ion monitoring. J Chromatogr 347, 109–120.[CrossRef]
    [Google Scholar]
  59. Ye, J., Lee, J. W., Presley, L. L., Bent, E., Wei, B., Braun, J., Schiller, N. L., Straus, D. S. & Borneman, J. ( 2008; ). Bacteria and bacterial rRNA genes associated with the development of colitis in IL-10−/− mice. Inflamm Bowel Dis 14, 1041–1050.[CrossRef]
    [Google Scholar]
  60. Yoon, J. H., Lee, K. C., Weiss, N., Kho, Y. H., Kang, K. H. & Park, Y. H. ( 2001; ). Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina. Int J Syst Evol Microbiol 51, 1079–1086.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.003087-0
Loading
/content/journal/ijsem/10.1099/ijs.0.003087-0
Loading

Data & Media loading...

Phylogenetic positions of strains Mt1B1–Mt1B7 and Mt1B8 among known members of the mouse intestinal microbiota and closely related species, based on neighbour-joining analysis of partial 16S rRNA gene sequences (548 bp). [PDF](59 KB)

PDF

Polar lipid analysis of strain Mt1B8 . DPG, Diphosphatidylglycerol; GL, glycolipid; PG, phosphatidylglycerol; PL, phospholipid.

IMAGE

Conversion of daidzein and genistein by strain Mt1B8 grown at 37 °C under anoxic conditions in BHI broth supplemented with 0.05 % (v/v) cysteine hydrochloride. [PDF](272 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error