1887

Abstract

A Gram-positive, endospore-forming, lactic acid bacterium was isolated from spoiled orange juice. The organism, strain QC81-06, grew microaerobically or anaerobically at 30–45 °C (optimum 35 °C) and pH 3.5–5.5 (optimum pH 4.5), and produced acid from various sugars. -Lactic acid was produced. It contained menaquinone-7 as the major isoprenoid quinone. The G+C content of the genomic DNA was 47.5 mol%. The predominant cellular fatty acids of the strain were iso-C, anteiso-C and anteiso-C. Phylogenetic analyses based on the 16S rRNA gene and gene (DNA gyrase B subunit gene) revealed that strain QC81-06 clustered with species but the strain was clearly distinct from other species with significant bootstrap values. The levels of 16S rRNA gene and gene sequence similarities between strain QC81-06 and the other strains of the cluster were 96.0–97.0 % and 75.1–77.2 %, respectively. On the basis of these results, strain QC81-06 should be classified as a novel species for which the name is proposed. The type strain is strain QC81-06 (=DSM 21265=JCM 15325).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.002048-0
2010-07-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/60/7/1499.html?itemId=/content/journal/ijsem/10.1099/ijs.0.002048-0&mimeType=html&fmt=ahah

References

  1. Andersch, I., Pianka, S., Fritze, D. & Claus, D. ( 1994; ). Description of Bacillus laevolacticus (ex Nakayama and Yanoshi 1967) sp. nov., nom. rev. Int J Syst Bacteriol 44, 659–664.[CrossRef]
    [Google Scholar]
  2. Chang, Y. H., Jung, M. Y., Park, I. S. & Oh, H. M. ( 2008; ). Sporolactobacillus vineae sp. nov., a spore-forming lactic acid bacterium isolated from vineyard soil. Int J Syst Evol Microbiol 58, 2316–2320.[CrossRef]
    [Google Scholar]
  3. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 30, 783–791.
    [Google Scholar]
  4. Goto, K., Omura, T., Hara, Y. & Sadaie, Y. ( 2000; ). Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J Gen Appl Microbiol 46, 1–8.[CrossRef]
    [Google Scholar]
  5. Goto, K., Mochida, K., Asahara, M., Suzuki, M. & Yokota, A. ( 2002; ). Application of the hypervariable region of the 16S rDNA sequence as an index for the rapid identification of species in the genus Alicyclobacillus. J Gen Appl Microbiol 48, 243–250.[CrossRef]
    [Google Scholar]
  6. Harper, J. J. & Davis, G. H. C. ( 1979; ). Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int J Syst Bacteriol 29, 56–58.[CrossRef]
    [Google Scholar]
  7. Hasegawa, T., Takizawa, M. & Tanida, S. ( 1983; ). A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29, 319–322.[CrossRef]
    [Google Scholar]
  8. Hatayama, K., Shoun, H., Ueda, Y. & Nakamura, A. ( 2006; ). Tuberibacillus calidus gen. nov., sp. nov., isolated from a compost pile and reclassification of Bacillus naganoensis Tomimura et al. 1990 as Pullulanibacillus naganoensis gen. nov., comb. nov. and Bacillus laevolacticus Andersch et al. 1994 as Sporolactobacillus laevolacticus comb. nov. Int J Syst Evol Microbiol 56, 2545–2551.[CrossRef]
    [Google Scholar]
  9. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  10. Kitahara, K. & Lai, C. L. ( 1967; ). On the spore formation of Sporolactobacillus inulinus. J Gen Appl Microbiol 13, 197–203.[CrossRef]
    [Google Scholar]
  11. Kitahara, K. & Suzuki, J. ( 1963; ). Sporolactobacillus nov. subgen. J Gen Appl Microbiol 9, 59–71.[CrossRef]
    [Google Scholar]
  12. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). mega2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  13. Okada, S., Daengsubha, W., Uchimura, T., Ohara, N. & Kozaki, M. ( 1986; ). Flora of lactic acid bacteria in miang produced in northern Thailand. J Gen Appl Microbiol 32, 57–65.[CrossRef]
    [Google Scholar]
  14. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  15. Sano, H., Sakai, M. & Nishijima, M. ( 1996; ). Application of MS to the search of the products from marine bacteria. J Mass Spectrom Soc Jpn 44, 377–391.[CrossRef]
    [Google Scholar]
  16. Sawadecker, J. S., Slonecker, J. H. & Jeanes, A. ( 1965; ). Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography. Anal Chem 37, 1602–1604.[CrossRef]
    [Google Scholar]
  17. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  18. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  19. Yamamoto, S. & Harayama, S. ( 1995; ). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61, 1104–1109.
    [Google Scholar]
  20. Yanagida, F., Suzuki, K., Kaneko, T., Kozaki, M. & Komagata, K. ( 1987a; ). Morphological, biochemical, and physiological characteristics of spore-forming lactic acid bacteria. J Gen Appl Microbiol 33, 33–45.[CrossRef]
    [Google Scholar]
  21. Yanagida, F., Suzuki, K., Kaneko, T., Kozaki, M. & Komagata, K. ( 1987b; ). Deoxyribonucleic acid relatedness among some spore-forming lactic acid bacteria. J Gen Appl Microbiol 33, 47–55.[CrossRef]
    [Google Scholar]
  22. Yanagida, F., Suzuki, K., Kozaki, M. & Komagata, K. ( 1997; ). Proposal of Sporolactobacillus nakayamae subsp. nakayamae sp. nov., subsp. nov., Sporolactobacillus nakayamae subsp. racemicus subsp. nov., Sporolactobacillus terrae sp. nov., Sporolactobacillus kofuensis sp. nov., and Sporolactobacillus lactosus sp.nov. Int J Syst Bacteriol 47, 499–504.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.002048-0
Loading
/content/journal/ijsem/10.1099/ijs.0.002048-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1499-1503

Cells of sp. nov. QC81-06 grown on Plate Count Agar. Phylogenetic tree (constructed using the minimum evolution method) showing the position of strain QC81-06 in the cluster based on 16S rRNA gene sequences. Phylogenetic tree (constructed using the maximum-parsimony method) showing the position of strain QC81-06 in the cluster based on 16S rRNA gene sequences. Phylogenetic tree (constructed using the minimum evolution method) showing the position of strain QC81-06 in the cluster based on gene sequences. Phylogenetic tree (constructed using the maximum-parsimony method) showing the position of strain QC81-06 in the cluster based on gene sequences. [Combined PDF](38 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error