1887

Abstract

Mixed trypanosomatid infections (a simultaneous presence of two or more parasites in the same host) have long been suspected to represent an obstacle for recovering cultures that would faithfully represent original species descriptions. However, without the means to directly compare the parasites in the host and in culture, this would remain just a possibility. Here we have used PCR-based genotyping of spliced leader RNA gene repeats to analyse several novel species of insect trypanosomatids isolated from heteropteran hosts and to compare them with the parasites that had been detected in the gut smears of the same hosts. We have found that, whereas the original infections were dominated by some blastocrithidia-like parasites, most of the respective axenic cultures contained novel species of and . Therefore, we concluded that, in each case, this replacement was caused by differences in cultivation properties between the original predominant blastocrithidia and the less fastidious parasite that was later recovered in culture. The properties of the new organisms, including their morphology and ultrastructure, as well as their phylogenetic affinities within the family, were investigated and used to describe five novel species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.001149-0
2009-04-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/4/893.html?itemId=/content/journal/ijsem/10.1099/ijs.0.001149-0&mimeType=html&fmt=ahah

References

  1. Bosseno, M. F., Yacsik, N., Vargas, F. & Breniere, S. F. ( 2000; ). Selection of Trypanosoma cruzi clonal genotypes (clonet 20 and 39) isolated from Bolivian triatomines following subculture in liquid medium. Mem Inst Oswaldo Cruz 95, 601–607.[CrossRef]
    [Google Scholar]
  2. Brandão, A. A., Miranda, A., Degrave, W. M. & Sousa, M. A. ( 2000; ). The heterogeneity of choanomastigote-shaped trypanosomatids as analyzed by their kDNA minicircle size: taxonomic implications. Parasitol Res 86, 809–812.[CrossRef]
    [Google Scholar]
  3. Brooker, B. E. ( 1971; ). The fine structure of Crithidia fasciculata with special reference to the organelles involved in the ingestion and digestion of proteins. Z Zellforsch 116, 532–563.[CrossRef]
    [Google Scholar]
  4. Brun, R. & Schönenberger, M. ( 1979; ). Cultivation and in vitro cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Trop 36, 289–292.
    [Google Scholar]
  5. Bulat, S. A., Mokrousov, I. V. & Podlipaev, S. A. ( 1999; ). Classification of trypanosomatids from insects and plants by the UP-PCR (universally-primed PCR) technique and cross dot blot hybridization of PCR products. Eur J Protistol 35, 319–326.[CrossRef]
    [Google Scholar]
  6. Camargo, E. P. ( 1999; ). Phytomonas and other trypanosomatid parasites of plants and fruit. Adv Parasitol 42, 29–112.
    [Google Scholar]
  7. Carvalho, A. L. M. & Deane, M. P. ( 1974; ). Trypanosomatidae isolated from Zelus leucogrammus (Perty, 1834) (Hemiptera, Reduviidae), with a discussion on flagellates of insectivorous bugs. J Protozool 21, 5–8.[CrossRef]
    [Google Scholar]
  8. Chang, K.-P. ( 1975; ). Reduced growth of Blastocrithidia culicis and Crithidia oncopelti freed of intracellular symbionts by chloramphenicol. J Protozool 22, 271–276.[CrossRef]
    [Google Scholar]
  9. Clark, C. G. ( 1997; ). Riboprinting: a tool for the study of genetic diversity in microorganisms. J Eukaryot Microbiol 44, 277–283.[CrossRef]
    [Google Scholar]
  10. Cupolillo, E., Medina-Acosta, E., Noyes, H., Momen, H. & Grimaldi, G., Jr ( 2000; ). A revised classification for Leishmania and Endotrypanum. Parasitol Today 16, 142–144.[CrossRef]
    [Google Scholar]
  11. De Menezes, M. C. N. D. & Roitman, I. ( 1991; ). Nutritional requirements of Blastocrithidia culicis, a trypanosomatid with an endosymbiont. J Eukaryot Microbiol 38, 122–123.
    [Google Scholar]
  12. Dey, T., Afrin, F., Anam, K. & Ali, N. ( 2002; ). Infectivity and virulence of Leishmania donovani promastigotes: a role for media, source, and strain of parasite. J Eukaryot Microbiol 49, 270–274.[CrossRef]
    [Google Scholar]
  13. Doležel, D., Jirků, M., Maslov, D. A. & Lukeš, J. ( 2000; ). Phylogeny of the bodonid flagellates (Kinetoplastida) based on small-subunit rRNA gene sequences. Int J Syst Evol Microbiol 50, 1943–1951.
    [Google Scholar]
  14. Dukes, P., McNamara, J. J. & Godfrey, D. G. ( 1991; ). Elusive trypanosomes. Ann Trop Med Parasitol 85, 21–32.
    [Google Scholar]
  15. Faria e Silva, P. M., Solé-Cava, A. M., Soares, M. J., Motta, M. C. M., Fiorini, J. E. & de Souza, W. ( 1991; ). Herpetomonas roitmani (Fiorini et al., 1989) n. comb.: a trypanosomatid with a bacterium-like endosymbiont in the cytoplasm. J Protozool 38, 489–494.[CrossRef]
    [Google Scholar]
  16. Freymuller, E. & Camargo, E. ( 1981; ). Ultrastructural differences between species of trypanosomatids with and without endosymbionts. J Protozool 28, 175–182.[CrossRef]
    [Google Scholar]
  17. Gadelha, C., Wickstead, B., de Souza, W., Gull, K. & Cunha-e-Silva, N. ( 2005; ). Cryptic paraflagellar rod in endosymbiont-containing kinetoplastid protozoa. Eukaryot Cell 4, 516–525.[CrossRef]
    [Google Scholar]
  18. Hoare, C. A. & Wallace, F. G. ( 1966; ). Developmental stages of trypanosomatid flagellates: a new terminology. Nature 212, 1385–1386.[CrossRef]
    [Google Scholar]
  19. Hollar, L., Lukeš, J. & Maslov, D. A. ( 1998; ). Monophyly of endosymbiont containing trypanosomatids: Phylogeny versus taxonomy. J Eukaryot Microbiol 45, 293–297.[CrossRef]
    [Google Scholar]
  20. Jamonneau, V., Garcia, A., Ravel, S., Cuny, G., Oury, B., Solano, P., N'guessan, P., N'dri, L., Sanon, R. & other authors ( 2002; ). Genetic characterization of Trypanosoma brucei gambiense and clinical evolution of human African trypanosomiasis in Côte d'Ivoire. Trop Med Int Health 7, 610–621.[CrossRef]
    [Google Scholar]
  21. Jamonneau, V., Ravel, S., Koffi, M., Kaba, D., Zeze, D. G., Ndri, L., Sane, B., Coulibaly, B., Cuny, G. & Solano, P. ( 2004; ). Mixed infections of trypanosomes in tsetse and pigs and their epidemiological significance in a sleeping sickness focus of Côte d'Ivoire. Parasitology 129, 693–702.[CrossRef]
    [Google Scholar]
  22. Kostygov, A. I. & Frolov, A. O. ( 2007; ). Leptomonas jaculum (Leger, 1902) Woodcock 1914: a leptomonas or a blastocrithidia? Parazitologiia 41, 126–136.
    [Google Scholar]
  23. Lukeš, J. & Votýpka, J. ( 2000; ). Trypanosoma avium: novel features of the kinetoplast structure. Exp Parasitol 96, 178–181.[CrossRef]
    [Google Scholar]
  24. Lukeš, J., Jirků, M., Doležel, D., Kral'ová, I., Hollar, L. & Maslov, D. A. ( 1997; ). Analysis of ribosomal RNA genes suggests that trypanosomes are monophyletic. J Mol Evol 44, 521–527.[CrossRef]
    [Google Scholar]
  25. Manaia, A., De Souza, M., Lustoza, E. & Roitman, I. ( 1981; ). Leptomonas lactosovorans n. sp., a lactose-utilizing trypanosomatid: description and nutritional requirements. J Eukaryot Microbiol 28, 124–126.
    [Google Scholar]
  26. Masiga, D. K., McNamara, J. J., Laveissiere, C., Truc, P. & Gibson, W. C. ( 1996; ). A high prevalence of mixed trypanosome infections in tsetse flies in Sinfra, Côte d'Ivoire, detected by DNA amplification. Parasitology 112, 75–80.[CrossRef]
    [Google Scholar]
  27. Maslov, D. A., Westenberger, S. J., Xu, X., Campbell, D. A. & Sturm, N. R. ( 2007; ). Discovery and barcoding by analysis of spliced leader RNA gene sequences of new isolates of Trypanosomatidae from Heteroptera in Costa Rica and Ecuador. J Eukaryot Microbiol 54, 57–65.[CrossRef]
    [Google Scholar]
  28. Merzlyak, E., Yurchenko, V., Kolesnikov, A. A., Alexandrov, K., Podlipaev, S. A. & Maslov, D. A. ( 2001; ). Diversity and phylogeny of insect trypanosomatids based on small subunit rRNA genes: polyphyly of Leptomonas and Blastocrithidia. J Eukaryot Microbiol 48, 161–169.[CrossRef]
    [Google Scholar]
  29. Motta, M. C. M., Soares, M. J., Attias, M., Morgado, J., Lemos, A. D. P., Saad-Nehme, J., Meyer-Fernandes, J. R. & de Souza, W. ( 1997; ). Ultrastructural and biochemical analysis of the relationship of Crithidia deanei with its endosymbiont. Eur J Cell Biol 72, 370–377.
    [Google Scholar]
  30. Njiokou, F., Simo, G., Nkinin, S. W., Laveissiere, C. & Herder, S. ( 2004; ). Infection rate of Trypanosoma brucei s.l., T. vivax, T. congolense “forest type”, and T. simiae in small wild vertebrates in south Cameroon. Acta Trop 92, 139–146.[CrossRef]
    [Google Scholar]
  31. Peng, P. L. M. & Wallace, F. G. ( 1981; ). The cultivation of Blastocrithidia triatomae Cerisola et al., 1971. J Protozool 28, 116–118.[CrossRef]
    [Google Scholar]
  32. Podlipaev, S. A. ( 1985; ). New species of lower trypanosomatids from insects (Hemiptera: Heteroptera) belonging to the families Gerridae and Nabidae: their life cycle stages in nature and in culture. Proc Zool Inst USSR Acad Sci 129, 35–47.
    [Google Scholar]
  33. Podlipaev, S. A. ( 1990; ). Catalogue of world fauna of Trypanosomatidae (Protozoa). Proc Zool Inst Leningrad 144, 1–178.
    [Google Scholar]
  34. Podlipaev, S. A. ( 2000; ). Insect trypanosomatids: the need to know more. Mem Inst Oswaldo Cruz 95, 517–522.[CrossRef]
    [Google Scholar]
  35. Podlipaev, S. A. ( 2001; ). The more insect trypanosomatids under study - the more diverse trypanosomatidae appears. Int J Parasitol 31, 648–652.[CrossRef]
    [Google Scholar]
  36. Podlipaev, S. A. ( 2003; ). Host specificity of homoxenous trypanosomatids. Parazitologiia 37, 3–17.
    [Google Scholar]
  37. Podlipaev, S. A. & Frolov, A. O. ( 1987; ). Description and laboratory cultivation of Blastocrithidia miridarum sp. n. (Mastigophora, Trypanosomatidae). Parasitologia 21, 545–552.
    [Google Scholar]
  38. Podlipaev, S., Votýpka, J., Jirků, M., Svobodová, M. & Lukeš, J. ( 2004; ). Herpetomonas ztiplika n. sp. (Kinetoplastida: Trypanosomatidae): a parasite of the blood-sucking biting midge Culicoides kibunensis Tokunaga, 1937 (Diptera: Ceratopogonidae). J Parasitol 90, 342–347.[CrossRef]
    [Google Scholar]
  39. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  40. Reduth, D., Schaub, G. A. & Pudney, M. ( 1989; ). Cultivation of Blastocrithidia triatomae (Trypanosomatidae) on a cell line of its host Triatoma infestans (Reduviidae). Parasitology 98, 387–393.[CrossRef]
    [Google Scholar]
  41. Reifenberg, J. M., Solano, P., Duvallet, G., Cuisance, D., Simpore, J. & Cuny, G. ( 1997; ). Molecular characterization of trypanosome isolates from naturally infected domestic animals in Burkina Faso. Vet Parasitol 71, 251–262.[CrossRef]
    [Google Scholar]
  42. Simpson, L., Thiemann, O. H., Savill, N. J., Alfonzo, J. D. & Maslov, D. A. ( 2000; ). Evolution of RNA editing in trypanosome mitochondria. Proc Natl Acad Sci U S A 97, 6986–6993.[CrossRef]
    [Google Scholar]
  43. Simpson, A. G., Stevens, J. R. & Lukeš, J. ( 2006; ). The evolution and diversity of kinetoplastid flagellates. Trends Parasitol 22, 168–174.[CrossRef]
    [Google Scholar]
  44. Stevens, J. R., Mathieu-Daudé, F., McNamara, J. J., Mizen, V. H. & Nzila, A. ( 1994; ). Mixed populations of Trypanosoma brucei in wild Glossina palpalis palpalis. Trop Med Parasitol 45, 313–318.
    [Google Scholar]
  45. Swofford, D. L. ( 1998; ). paup* 4.0: Phylogenetic Analysis Using Parsimony (and other methods), beta version. Sunderland, MA: Sinauer Associates.
  46. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  47. Vickerman, K. ( 1976; ). The diversity of the kinetoplastid flagellates. In Biology of the Kinetoplastida, pp. 1–34. Edited by W. H. R. Lumsden & D. A. Evans. London: Academic Press.
  48. Wallace, F. G. ( 1966; ). The trypanosomatid parasites of insects and arachnids. Exp Parasitol 18, 124–193.[CrossRef]
    [Google Scholar]
  49. Wallace, F. G., Camargo, E. P., McGhee, R. B. & Roitman, I. ( 1983; ). Guidelines for the description of new species of lower trypanosomatids. J Protozool 30, 308–313.[CrossRef]
    [Google Scholar]
  50. Westenberger, S. J., Sturm, N. R., Yanega, D., Podlipaev, S. A., Zeledón, R., Campbell, D. A. & Maslov, D. A. ( 2004; ). Trypanosomatid biodiversity in Costa Rica: genotyping of parasites from Heteroptera using the spliced leader RNA gene. Parasitology 129, 537–547.[CrossRef]
    [Google Scholar]
  51. Yurchenko, V. Y. & Kolesnikov, A. A. ( 2001; ). Minicircular kinetoplast DNA of Trypanosomatidae. Mol Biol (Mosk) 35, 3–13.
    [Google Scholar]
  52. Yurchenko, V., Lukeš, J., Xu, X. & Maslov, D. A. ( 2006a; ). An integrated morphological and molecular approach to a new species description in the Trypanosomatidae: the case of Leptomonas podlipaevi n. sp., a parasite of Boisea rubrolineata (Hemiptera: Rhopalidae). J Eukaryot Microbiol 53, 103–111.[CrossRef]
    [Google Scholar]
  53. Yurchenko, V. Y., Lukeš, J., Jirků, M., Zeledón, R. & Maslov, D. A. ( 2006b; ). Leptomonas costaricensis sp. n. (Kinetoplastea: Trypanosomatidae), a member of the novel phylogenetic group of insect trypanosomatids closely related to the genus Leishmania. Parasitology 133, 537–546.[CrossRef]
    [Google Scholar]
  54. Yurchenko, V. Y., Lukeš, J., Tesařová, M., Jirků, M. & Maslov, D. A. ( 2008; ). Morphological discordance of the new trypanosomatid species phylogenetically associated with the genus Crithidia. Protist 159, 99–114.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.001149-0
Loading
/content/journal/ijsem/10.1099/ijs.0.001149-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error