1887

Abstract

A polyphasic study was undertaken to clarify the taxonomic position of -like strains isolated from shellfish and humans. The diversity within the strain collection was initially screened by means of fluorescent amplified fragment length polymorphism analysis and whole-cell protein electrophoresis, revealing the existence of two clusters distinct from and other species. The divergence of these clusters was confirmed by phenotypic analysis and by 16S rRNA and gene sequence analysis. Phylogenetic analysis identified , , and as the closest phylogenetic neighbours of both taxa. DNA–DNA hybridizations revealed that one cluster, comprising 10 strains, represented a novel species, for which the name sp. nov. is proposed, with 2314BVA (=LMG 23910 =CCUG 55787) as the type strain. The second cluster, comprising six strains, represents a novel subspecies within the species , for which the name subsp. subsp. nov. is proposed, with 2897R (=LMG 21009 =CCUG 55786) as the type strain. The description of subsp. has the effect of automatically creating the subspecies subsp. subsp. nov. (type strain LMG 8846=NCTC 11352).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000851-0
2009-05-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/5/1126.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000851-0&mimeType=html&fmt=ahah

References

  1. Benjamin, J., Leaper, S., Owen, R. J. & Skirrow, M. B. ( 1983; ). Description of Campylobacter laridis, a new species comprising the nalidixic acid resistant thermophilic Campylobacter (NARTC) group. Curr Microbiol 8, 231–238.[CrossRef]
    [Google Scholar]
  2. Debruyne, L., Gevers, D. & Vandamme, P. ( 2008; ). Taxonomy of the family Campylobacteraceae. In Campylobacter, 3rd edn, pp. 3–26. Edited by I. Nachamkin, C. M. Szymanski & M. J. Blaser. Washington, DC: American Society for Microbiology.
  3. Duim, B., Wassenaar, T. M., Rigter, A. & Wagenaar, J. ( 1999; ). High-resolution genotyping of Campylobacter strains isolated from poultry and humans with amplified fragment length polymorphism fingerprinting. Appl Environ Microbiol 65, 2369–2375.
    [Google Scholar]
  4. Duim, B., Wagenaar, J. A., Dijkstra, J. R., Goris, J., Endtz, H. P. & Vandamme, P. A. ( 2004; ). Identification of distinct Campylobacter lari genogroups by amplified fragment length polymorphism and protein electrophoretic profiles. Appl Environ Microbiol 70, 18–24.[CrossRef]
    [Google Scholar]
  5. Endtz, H. P., Vliegenthart, J. S., Vandamme, P., Weverink, H. W., van den Braak, N. P., Verbrugh, H. A. & van Belkum, A. ( 1997; ). Genotypic diversity of Campylobacter lari isolated from mussels and oysters in The Netherlands. Int J Food Microbiol 34, 79–88.[CrossRef]
    [Google Scholar]
  6. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  7. Hill, J. E., Paccagnella, A., Law, K., Mellito, P. L., Woodward, D. L., Price, L., Leung, A. H., Ng, L. K., Hemmingsen, S. M. & Goh, S. H. ( 2006; ). Identification of Campylobacter spp. and discrimination from Helicobacter and Arcobacter spp. by direct sequencing of PCR-amplified cpn60 sequences and comparison to cpnDB, a chaperonin reference sequence database. J Med Microbiol 55, 393–399.[CrossRef]
    [Google Scholar]
  8. Inglis, G. D., Hoar, B. M., Whiteside, D. P. & Morck, D. W. ( 2007; ). Campylobacter canadensis sp. nov., from captive whooping cranes in Canada. Int J Syst Evol Microbiol 57, 2636–2644.[CrossRef]
    [Google Scholar]
  9. Kärenlampi, R. I., Tolvanen, T. P. & Hänninen, M. L. ( 2004; ). Phylogenetic analysis and PCR-restriction fragment length polymorphism identification of Campylobacter species based on partial groEL gene sequences. J Clin Microbiol 42, 5731–5738.[CrossRef]
    [Google Scholar]
  10. Lawson, A. J., On, S. L. W., Logan, J. M. J. & Stanley, J. ( 2001; ). Campylobacter hominis sp. nov., from the human gastrointestinal tract. Int J Syst Evol Microbiol 51, 651–660.
    [Google Scholar]
  11. Matsuda, M., Kaneko, A., Stanley, T., Millar, B. C., Miyajima, M., Murphy, P. G. & Moore, J. E. ( 2003; ). Characterization of urease-positive thermophilic Campylobacter subspecies by multilocus enzyme electrophoresis typing. Appl Environ Microbiol 69, 3308–3310.[CrossRef]
    [Google Scholar]
  12. Mesbah, M. & Whitman, W. B. ( 1989; ). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479, 297–306.[CrossRef]
    [Google Scholar]
  13. Miller, W. G., On, S. L., Wang, G., Fontanoz, S., Lastovica, A. J. & Mandrell, R. E. ( 2005; ). Extended multilocus sequence typing system for Campylobacter coli, C. lari, C. upsaliensis, and C. helveticus. J Clin Microbiol 43, 2315–2329.[CrossRef]
    [Google Scholar]
  14. On, S. L. W. & Harrington, C. S. ( 2000; ). Identification of taxonomic and epidemiological relationships among Campylobacter species by numerical analysis of AFLP profiles. FEMS Microbiol Lett 193, 161–169.[CrossRef]
    [Google Scholar]
  15. On, S. L. W. & Holmes, B. ( 1991a; ). Effect of inoculum size on the phenotypic characterization of Campylobacter species. J Clin Microbiol 29, 923–926.
    [Google Scholar]
  16. On, S. L. W. & Holmes, B. ( 1991b; ). Reproducibility of tolerance tests that are useful in the identification of campylobacteria. J Clin Microbiol 29, 1785–1788.
    [Google Scholar]
  17. On, S. L. W. & Holmes, B. ( 1992; ). Assessment of enzyme detection tests useful in identification of campylobacteria. J Clin Microbiol 30, 746–749.
    [Google Scholar]
  18. On, S. L. W., Holmes, B. & Sackin, M. J. ( 1996; ). A probability matrix for the identification of campylobacters, helicobacters and allied taxa. J Appl Bacteriol 81, 425–432.
    [Google Scholar]
  19. Pitcher, D. G., Saunders, N. A. & Owen, R. J. ( 1989; ). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8, 151–156.[CrossRef]
    [Google Scholar]
  20. Pot, B., Vandamme, P. & Kersters, K. ( 1994; ). Analysis of electrophoretic whole-organism protein fingerprints. In Chemical Methods in Prokaryotic Systematics, pp. 493–521. Edited by M. Goodfellow & A. G. O'Donnell. Chichester: Wiley.
  21. Sebald, M. & Veron, M. ( 1963; ). Base DNA content and classification of vibrios. Ann Inst Pasteur (Paris) 105, 897–910.
    [Google Scholar]
  22. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  23. Vandamme, P., Falsen, E., Rossau, R., Hoste, B., Segers, P., Tytgat, R. & De Ley, J. ( 1991; ). Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Bacteriol 41, 88–103.[CrossRef]
    [Google Scholar]
  24. Vandamme, P., Holmes, B., Bercovier, H. & Coenye, T. ( 2006; ). Classification of Centers for Disease Control Group Eugonic Fermenter (EF)-4a and EF-4b as Neisseria animaloris sp. nov. and Neisseria zoodegmatis sp. nov., respectively. Int J Syst Evol Microbiol 56, 1801–1805.[CrossRef]
    [Google Scholar]
  25. van Doorn, L. J., Verschuuren-van Haperen, A., van Belkum, A., Endtz, H. P., Vliegenthart, J. S., Vandamme, P. & Quint, W. G. V. ( 1998; ). Rapid identification of diverse Campylobacter lari strains isolated from mussels and oysters using a reverse hybridization line probe assay. J Appl Microbiol 84, 545–550.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000851-0
Loading
/content/journal/ijsem/10.1099/ijs.0.000851-0
Loading

Data & Media loading...

vol. , part 5, pp. 1126 - 1132

Strain collection used in this study

Phylogenetic tree of selected strains based on gene sequences constructed by the neighbour-joining method

[PDF file of Supplementary Table S1 and Supplementary Fig. S1](351 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error