1887

Abstract

An aerobic, Gram-stain-negative, short rod-shaped, non-spore-forming, cyhalothrin-degrading bacterial strain, XZ2, was isolated from the surface water of Hanjiang River in Wuhan, China. Strain XZ2 grew optimally at pH 6.0, 30 °C and in the absence of NaCl. The G+C content of the total DNA was 64.1 mol%. The 16S rRNA gene sequence of strain XZ2 showed the highest similarity to that of M 2040 (99.1 %), followed by UK34/07-5 (95.9 %) and K106 (95.3 %). The major cellular fatty acids of strain XZ2 were C cyclo ω8 (63.1 %), C (15.0 %) and Cω7/Cω6 (summed feature 8; 8.9 %). C 3-OH was also detected as the major hydroxylated fatty acid. The respiratory quinone was ubiquinone Q-10. The polar lipid profile included the major compounds phosphatidylcholine and diphosphatidylglycerol, and moderate amounts of phosphatidylethanolamine, phosphatidylglycerol and two unidentified aminolipids. The predominant compound in the polyamine pattern was spermidine. These chemotaxonomic data supported the affiliation of strain XZ2 to the genus The DNA–DNA hybridization value between strain XZ2 and M 2040 was 43.5 ± 0.6 %. DNA–DNA hybridization data as well as biochemical and physiological characteristics strongly supported the genotypic and phenotypic differentiations between strain XZ2 and M 2040. Therefore, strain XZ2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is XZ2 ( = KCTC 42282 = ACCC 19738).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000384
2015-09-01
2019-12-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/3109.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000384&mimeType=html&fmt=ahah

References

  1. Beveridge T.J., Lawrence J.R., Murray R.E.G.. ( 2007;). Sampling and staining for light microscopy. . In Methods for General and Molecular Microbiology, pp. 19–33. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.., 3rd edn.., Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  2. Dadáková E., Křížek M., Pelikánová T.. ( 2009;). Determination of biogenic amines in foods using ultra-performance liquid chromatography (UPLC). Food Chem 116: 365–370 [CrossRef].
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  4. He L., Li W., Huang Y., Wang L., Liu Z., Lanoot B., Vancanneyt M., Swings J.. ( 2005;). Streptomyces jietaisiensis sp. nov., isolated from soil in northern China. Int J Syst Evol Microbiol 55: 1939–1944 [CrossRef] [PubMed].
    [Google Scholar]
  5. Kämpfer P., Scholz H.C., Langer S., Wernery U., Wernery R., Johnson B., Joseph M., Lodders N., Busse H.-J.. ( 2010;). Camelimonas lactis gen. nov., sp. nov., isolated from the milk of camels. Int J Syst Evol Microbiol 60: 2382–2386 [CrossRef] [PubMed].
    [Google Scholar]
  6. Kämpfer P., Scholz H.C., Lodders N., Loncaric I., Whatmore A.M., Busse H-J.. ( 2012;). Camelimonas abortus sp. nov., isolated from placental tissue of cattle. Int J Syst Evol Microbiol 62: 1117–1120 [CrossRef] [PubMed].
    [Google Scholar]
  7. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  8. Kuykendall L.D., Roy M.A., O'Neill J.J., Devine T.E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38: 358–361 [CrossRef].
    [Google Scholar]
  9. Lane D.L.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. R., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  10. Liu X-M., Chen K., Meng C., Zhang L., Zhu J-C., Huang X., Li S-P., Jiang J-D.. ( 2014;). Pseudoxanthobacter liyangensis sp. nov., isolated from dichlorodiphenyltrichloroethane-contaminated soil. Int J Syst Evol Microbiol 64: 3390–3394 [CrossRef] [PubMed].
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W.B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  12. Miller L.T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584–586 [PubMed].
    [Google Scholar]
  13. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  14. Tel-Zur N., Abbo S., Myslabodski D., Mizrahi Y.. ( 1999;). Modified CTAB procedure for DNA isolation from epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae). Plant Mol Biol Rep 17: 249–254 [CrossRef].
    [Google Scholar]
  15. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  16. Tindall B.J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  17. Tindall B.J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  18. Tindall B.J., Sikorski J., Smibert R.M., Krieg N.R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Marzluf J. A., Schmidt T. M., Snyder L. R.., 3rd edn.., Washington, DC: American Society for Microbiology; [CrossRef].
    [Google Scholar]
  19. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  20. Zhang J., Gu T., Zhou Y., He J., Zheng L.Q., Li W.J., Huang X., Li S.P.. ( 2012;). Terrimonas rubra sp. nov., isolated from a polluted farmland soil and emended description of the genus Terrimonas. Int J Syst Evol Microbiol 62: 2593–2597 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000384
Loading
/content/journal/ijsem/10.1099/ijs.0.000384
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error