1887

Abstract

A Gram-stain-negative, aerobic and moderately halophilic bacterium, designated strain EMB201, was isolated from tidal flat sediment of the South Sea in Korea. Cells were motile rods with a single polar flagellum and had catalase- and oxidase-positive activities. Growth of strain EMB201 was observed at 15–37 °C (optimum, 30 °C), at pH 5.0–9.5 (optimum, pH 7.0–7.5) and in the presence of 1–7 % (w/v) NaCl (optimum, 2–3 %). Strain EMB201 contained ubiquinone-10 as the sole isoprenoid quinone and summed feature 8 (comprising Cω7/ω6), Cω7 11-methyl and C 3-OH as the major fatty acids. Phosphatidylglycerol and an unidentified amino lipid were identified as the major polar lipids and an unidentified phospholipid and three unidentified lipids were detected as minor components. The G+C content of the genomic DNA was approximately 58.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EMB201 formed a phylogenetic lineage with members of the genus . Strain EMB201 was related most closely to ZXM137 with a 16S rRNA gene sequence similarity of 98.3 %, and the level of DNA–DNA relatedness between the two strains was 17.0 ± 2.0 %. The combined chemotaxonomic and molecular properties suggest that strain EMB201 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is EMB201 ( = KACC 18393 = JCM 30679).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000381
2015-09-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/3073.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000381&mimeType=html&fmt=ahah

References

  1. Baek K. , Choi A. , Kang I. , Cho J.C. . ( 2014;). Celeribacter marinus sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 64: 1323–1327 [CrossRef] [PubMed].
    [Google Scholar]
  2. Felsenstein J. . ( 2002;). phylip (phylogeny inference package), version 3.6a. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA..
  3. Gomori G. . ( 1955;). Preparation of buffers for use in enzyme studies. . In Methods in Enzymology vol. 1, pp. 138–146. Edited by Colowick S. P. , Kaplan N. O. . New York: Academic Press; [CrossRef].
    [Google Scholar]
  4. Ivanova E.P. , Webb H. , Christen R. , Zhukova N.V. , Kurilenko V.V. , Kalinovskaya N.I. , Crawford R.J. . ( 2010;). Celeribacter neptunius gen. nov., sp. nov., a new member of the class Alphaproteobacteria . Int J Syst Evol Microbiol 60: 1620–1625 [CrossRef] [PubMed].
    [Google Scholar]
  5. Jin H.M. , Kim J.M. , Lee H.J. , Madsen E.L. , Jeon C.O. . ( 2012;). Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment. Environ Sci Technol 46: 7731–7740 [CrossRef] [PubMed].
    [Google Scholar]
  6. Jin H.M. , Choi E.J. , Jeon C.O. . ( 2013;). Isolation of a BTEX-degrading bacterium, Janibacter sp. SB2, from a sea-tidal flat and optimization of biodegradation conditions. Bioresour Technol 145: 57–64 [CrossRef] [PubMed].
    [Google Scholar]
  7. Jin H.M. , Jeong H.I. , Jeon C.O. . ( 2015;). Aliiglaciecola aliphaticivorans sp. nov., an aliphatic hydrocarbon-degrading bacterium, isolated from a sea-tidal flat and emended description of the genus Aliiglaciecola Jean et al. 2013. Int J Syst Evol Microbiol 65: 1550–1555.[CrossRef]
    [Google Scholar]
  8. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kim M. , Oh H-S. , Park S-C. , Chun J. . ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64: 346–351 [CrossRef] [PubMed].
    [Google Scholar]
  10. Komagata K. , Suzuki K. . ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–208.[CrossRef]
    [Google Scholar]
  11. Lai Q. , Cao J. , Yuan J. , Li F. , Shao Z. . ( 2014;). Celeribacter indicus sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium from deep-sea sediment and reclassification of Huaishuia halophila as Celeribacter halophilus comb. nov. Int J Syst Evol Microbiol 64: 4160–4167 [CrossRef] [PubMed].
    [Google Scholar]
  12. Lányí B. . ( 1987;). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19: 1–67.[CrossRef]
    [Google Scholar]
  13. Lee S.H. , Shim J.K. , Kim J.M. , Choi H-K. , Jeon C.O. . ( 2011;). Henriciella litoralis sp. nov., isolated from a tidal flat, transfer of Maribaculum marinum Lai et al. 2009 to the genus Henriciella as Henriciella aquimarina nom. nov. and emended description of the genus Henriciella . Int J Syst Evol Microbiol 61: 722–727 [CrossRef] [PubMed].
    [Google Scholar]
  14. Lee S.Y. , Park S. , Oh T.K. , Yoon J.H. . ( 2012;). Celeribacter baekdonensis sp. nov., isolated from seawater, and emended description of the genus Celeribacter Ivanova et al. 2010. Int J Syst Evol Microbiol 62: 1359–1364 [CrossRef] [PubMed].
    [Google Scholar]
  15. Lo N. , Kang H.J. , Jeon C.O. . ( 2014;). Zhongshania aliphaticivorans sp. nov., an aliphatic hydrocarbon-degrading bacterium isolated from marine sediment, and transfer of Spongiibacter borealis Jang et al. 2011 to the genus Zhongshania as Zhongshania borealis comb. nov. Int J Syst Evol Microbiol 64: 3768–3774 [CrossRef] [PubMed].
    [Google Scholar]
  16. Minnikin D.E. , Patel P.V. , Alshamaony L. , Goodfellow M. . ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27: 104–117 [CrossRef].
    [Google Scholar]
  17. Nawrocki E.P. , Eddy S.R. . ( 2007;). Query-dependent banding (QDB) for faster RNA similarity searches. PLOS Comput Biol 3: e56 [CrossRef] [PubMed].
    [Google Scholar]
  18. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids., MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  19. Smibert R.M. , Krieg N.R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  20. Stackebrandt E. , Ebers J. . ( 2006;). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33: 152–155.
    [Google Scholar]
  21. Stackebrandt E. , Frederiksen W. , Garrity G.M. , Grimont P.A.D. , Kämpfer P. , Maiden M.C.J. , Nesme X. , Rosselló-Mora R. , Swings J. , other authors . ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52: 1043–1047 [CrossRef] [PubMed].
    [Google Scholar]
  22. Stamatakis A. , Ott M. , Ludwig T. . ( 2005;). RAxML-OMP: an efficient program for phylogenetic inference on SMPs. . In Proceedings of the 8th International Conference on Parallel Computing Technologies (PaCT2005), Lecture Notes in Computer Science 3506 288–302 Berlin: Springer;.
    [Google Scholar]
  23. Tamaoka J. , Komagata K. . ( 1984;). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  24. Wang H. , Zhang X. , Yan S. , Qi Z. , Yu Y. , Zhang X.H. . ( 2012;). Huaishuia halophila gen. nov., sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 62: 223–228 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000381
Loading
/content/journal/ijsem/10.1099/ijs.0.000381
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error