1887

Abstract

Strain JC268 was isolated from pebbles collected from a dam located in Lalitpur, Uttar Pradesh, India. Cells of strain JC268 were coccoid, appeared in pairs/triads/tetrads or short chains and were Gram-stain-positive, non-spore-forming, non-motile and obligately aerobic. Strain JC268 was catalase- and oxidase-positive and utilized citrate for growth. The genomic DNA G+C content of strain JC268 was 65.3 mol%. The cell-wall peptidoglycan contained -lysine–-serine–-aspartic acid as interpeptide bridge with the type A4α. The major menaquinone was MK-8(H). Major (>10 %) fatty acids were iso-C, iso-CH and anteiso-Cω9. Diphosphatidylglycerol, phosphoglycolipid, phosphatidylinositol, glycolipid, four unidentified lipids, an amino lipid and phospholipid were the polar lipids of strain JC268. EzTaxon-e search of 16S rRNA gene sequences showed that strain JC268 has highest similarity to 39 (98.65 %) and MSW-24 (97.8 %) of the family . Genome reassociation (based on DNA–DNA hybridization) of strain JC268 with CGMCC 4.6864 ( = 39) and KCTC 19485 ( = MSW-24) yielded values of 32.5 ± 2 % and 27.32 %, respectively. Based on the data from phylogenetic and polyphasic taxonomic analyses, strain JC268 represents a novel species of the genus for which the name sp. nov., is proposed. The type strain of is JC268 ( = KCTC 29672 = NBRC 110608). Our data suggest that should be reclassified within the genus . Thus, a reclassification is proposed for , the type and only species of the genus , as comb. nov., which implies the emendation of the description of the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000374
2015-09-01
2021-04-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/3031.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000374&mimeType=html&fmt=ahah

References

  1. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (editors)( 1981). Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  2. Hiraishi A., Hoshino Y. ( 1984;). Distribution of rhodoquinone in Rhodospirillaceae and its taxonomic implications. J Gen Appl Microbiol 30 435448 [CrossRef].
    [Google Scholar]
  3. Hiraishi A., Hoshino Y., Kitamura H. ( 1984;). Isoprenoid quinone composition in the classification of Rhodospirillaceae . J Gen Appl Microbiol 30 197210 [CrossRef].
    [Google Scholar]
  4. Horath T., Bachofen R. ( 2009;). Molecular characterization of an endolithic microbial community in dolomite rock in the central Alps (Switzerland). Microb Ecol 58 290306 [CrossRef] [PubMed] .
    [Google Scholar]
  5. Imhoff J.F. ( 1984;). Quinones of phototrophic purple bacteria. FEMS Microbiol Lett 25 8589 [CrossRef].
    [Google Scholar]
  6. Kates M. ( 1986;). Influence of salt concentration on membrane lipids of halophilic bacteria. FEMS Microbiol Lett 39 95101 [CrossRef].
    [Google Scholar]
  7. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721 [CrossRef] [PubMed] .
    [Google Scholar]
  8. Kimura M. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16 111120 [CrossRef] [PubMed] .
    [Google Scholar]
  9. Lakshmi K.V.N.S., Sasikala Ch., Ashok Kumar G.V., Chandrasekaran R., Ramana Ch.V. ( 2011;). Phaeovibrio sulfidiphilus gen. nov., sp. nov., phototrophic alphaproteobacteria isolated from brackish water. Int J Syst Evol Microbiol 61 828833 [CrossRef] [PubMed] .
    [Google Scholar]
  10. Lee S.D. ( 2013;). Tamlicoccus marinus gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 63 19511954 [CrossRef] [PubMed] .
    [Google Scholar]
  11. Lee L.-H., Cheah Y.K., Sidik S.M., Xie Q.-Y., Tang Y.-L., Lin H.-P., Ab Mutalib N.-S., Hong K. ( 2013;). Barrientosiimonas humi gen. nov., sp. nov., an actinobacterium of the family Dermacoccaceae . Int J Syst Evol Microbiol 63 241248. [CrossRef]
    [Google Scholar]
  12. Mesbah M., Premachandran U., Whitman W.B. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39 159167 [CrossRef].
    [Google Scholar]
  13. Parag B., Sasikala Ch., Ramana Ch.V. ( 2013;). Molecular and culture dependent characterization of endolithic bacteria in two beach sand samples and description of Rhizobium endolithicum sp. nov. Antonie van Leeuwenhoek 104 12351244 [CrossRef] [PubMed] .
    [Google Scholar]
  14. Ramana Ch.V., Parag B., Girija K.R., Ram B.R., Ramana V.V., Sasikala Ch. ( 2013;). Rhizobium subbaraonis sp. nov., an endolithic bacterium isolated from beach sand. Int J Syst Evol Microbiol 63 581585 [CrossRef] [PubMed] .
    [Google Scholar]
  15. Shalem Raj P.S., Ramaprasad E.V., Vaseef S., Sasikala Ch., Ramana Ch.V. ( 2013;). Rhodobacter viridis sp. nov., a phototrophic bacterium isolated from mud of a stream. Int J Syst Evol Microbiol 63 181186 [CrossRef] [PubMed] .
    [Google Scholar]
  16. Stackebrandt E., Ebers J. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 3 152155.
    [Google Scholar]
  17. Stackebrandt E., Goebel B.M. ( 1994;). A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44 846849 [CrossRef].
    [Google Scholar]
  18. Subhash Y., Sasikala Ch., Ramana Ch.V. ( 2014a;). Bacillus luteus sp. nov., isolated from soil. Int J Syst Evol Microbiol 64 15801586 [CrossRef] [PubMed] .
    [Google Scholar]
  19. Subhash Y., Sasikala Ch., Ramana Ch.V. ( 2014b;). Sphingopyxis contaminans sp. nov., isolated from a contaminated Petri dish. Int J Syst Evol Microbiol 64 22382243 [CrossRef] [PubMed] .
    [Google Scholar]
  20. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30 27252729 [CrossRef] [PubMed] .
    [Google Scholar]
  21. Tourova T.P., Antonov A.S. ( 1987;). Identification of microorganisms by rapid DNA-DNA hybridization. Methods Microbiol 19 333355. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000374
Loading
/content/journal/ijsem/10.1099/ijs.0.000374
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error