1887

Abstract

A Gram-stain positive, strictly aerobic, non-motile and coccus-shaped actinobacterium, designated strain NEAU-ST5-33, was isolated from saline and alkaline soils in Dechang Township, Zhaodong City, PR China. It formed beige-yellow colonies and grew at NaCl concentrations of 0–5 % (w/v) (optimum 0 %), at pH 6.0–9.0 (optimum pH 7.0) and over a temperature range of 4–50 °C (optimum 35 °C). Based on 16S rRNA gene sequence analysis, strain NEAU-ST5-33 was phylogenetically closely related to the type strains of species of the genus , CMS 76or, DSM 20447, HO-9042, YIM 70003, K07-05 and HO-9041, with respective sequence similarities of 98.8 %, 98.8 %, 98.3 %, 98.1 %, 98.1 % and 97.9 %. DNA–DNA hybridization relatedness values of strain NEAU-ST5-33 with type strains of the closely related species ranged from 54 ± 1 % to 34 ± 1 %. The DNA G+C content was 61.2 mol%. The major fatty acids (>5 %) were C anteiso, C iso and Cω7 and/or Cω6. The major menaquinone detected was MK-8 (H), and the polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unknown aminolipid and one unknown lipid. On the basis of the genotypic, chemotaxonomic and phenotypic data, we propose that strain NEAU-ST5-33 represents a novel species of the genus , with the name sp. nov. The type strain is NEAU-ST5-33 ( = CGMCC 1.12187 = DSM 25872).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000372
2015-09-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/3024.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000372&mimeType=html&fmt=ahah

References

  1. Cerny G. . ( 1978;). Studies on aminopeptidase test for the distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5: 113–122 [CrossRef].
    [Google Scholar]
  2. Cowan S.T. , Steel K.J. . ( 1965;). Manual for the Identification of Medical Bacteria., London: Cambridge University Press;.
    [Google Scholar]
  3. Dastager S.G. , Tang S.-K. , Srinivasan K. , Lee J.-C. , Li W.-J. . ( 2014;). Kocuria indica sp. nov., isolated from a sediment sample. Int J Syst Evol Microbiol 64: 869–874 [CrossRef] [PubMed].
    [Google Scholar]
  4. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  5. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  6. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  7. Huss V.A.R. , Festl H. , Schleifer K.H. . ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 [CrossRef] [PubMed].
    [Google Scholar]
  8. Kim S.B. , Nedashkovskaya O.I. , Mikhailov V.V. , Han S.K. , Kim K.O. , Rhee M.S. , Bae K.S. . ( 2004;). Kocuria marina sp. nov., a novel actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 54: 1617–1620 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kovács G. , Burghardt J. , Pradella S. , Schumann P. , Stackebrandt E. , Màrialigeti K. . ( 1999;). Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). Int J Syst Bacteriol 49: 167–173 [CrossRef] [PubMed].
    [Google Scholar]
  12. Lee J.S. , Shin Y.K. , Yoon J.H. , Takeuchi M. , Pyun Y.R. , Park Y.H. . ( 2001;). Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51: 1491–1498.[CrossRef]
    [Google Scholar]
  13. Li W.J. , Zhang Y.Q. , Schumann P. , Chen H.H. , Hozzein W.N. , Tian X.P. , Xu L.H. , Jiang C.L. . ( 2006;). Kocuria aegyptia sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt. Int J Syst Evol Microbiol 56: 733–737 [CrossRef] [PubMed].
    [Google Scholar]
  14. Marmur J. . ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  15. Marmur J. , Doty P. . ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5: 109–118 [CrossRef] [PubMed].
    [Google Scholar]
  16. Mayilraj S. , Kroppenstedt R.M. , Suresh K. , Saini H.S. . ( 2006;). Kocuria himachalensis sp. nov., an actinobacterium isolated from the Indian Himalayas. Int J Syst Evol Microbiol 56: 1971–1975 [CrossRef] [PubMed].
    [Google Scholar]
  17. Minnikin D.E. , O'Donnell A.G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J.H. . ( 1984;). An integrated procedure for the extraction of isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  18. Pan Y. , Huang H. , Meng J. , Xiao H. , Li C. , Meng L. , Hong S. , Liu H. , Wang X. , Jiang J. . ( 2012;). [Biodiversity of culturable halotolerant and halophilic bacteria isolated from saline-alkaline soils in Songnen Plain]. Wei Sheng Wu Xue Bao 52: 1187–1194 (in Chinese).
    [Google Scholar]
  19. Park E.-J. , Kim M.-S. , Roh S.W. , Jung M.-J. , Bae J.-W. . ( 2010a;). Kocuria atrinae sp. nov., isolated from traditional Korean fermented seafood. Int J Syst Evol Microbiol 60: 914–918 [CrossRef] [PubMed].
    [Google Scholar]
  20. Park E.-J. , Roh S.W. , Kim M.-S. , Jung M.-J. , Shin K.S. , Bae J.-W. . ( 2010b;). Kocuria koreensis sp. nov., isolated from fermented seafood. Int J Syst Evol Microbiol 60: 140–143 [CrossRef] [PubMed].
    [Google Scholar]
  21. Rainey F.A. , Nobre M.F. , Schumann P. , Stackebrandt E. , da Costa M.S. . ( 1997;). Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int J Syst Bacteriol 47: 510–514 [CrossRef] [PubMed].
    [Google Scholar]
  22. Reddy G.S. , Prakash J.S. , Prabahar V. , Matsumoto G.I. , Stackebrandt E. , Shivaji S. . ( 2003;). Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 53: 183–187 [CrossRef] [PubMed].
    [Google Scholar]
  23. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
    [Google Scholar]
  24. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  25. Schleifer K.H. . ( 1985;). Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18: 123–156.[CrossRef]
    [Google Scholar]
  26. Schleifer K.H. , Kandler O. . ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407–477.
    [Google Scholar]
  27. Sehgal S.N. , Gibbons N.E. . ( 1960;). Effect of some metal ions on the growth of Halobacterium cutirubrum . Can J Microbiol 6: 165–169 [CrossRef] [PubMed].
    [Google Scholar]
  28. Seo Y.B. , Kim D.E. , Kim G.D. , Kim H.W. , Nam S.W. , Kim Y.T. , Lee J.H. . ( 2009;). Kocuria gwangalliensis sp. nov., an actinobacterium isolated from seawater. Int J Syst Evol Microbiol 59: 2769–2772 [CrossRef] [PubMed].
    [Google Scholar]
  29. Smibert R.M. , Krieg N.R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  30. Stackebrandt E. , Koch C. , Gvozdiak O. , Schumann P. . ( 1995;). Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 45: 682–692 [CrossRef] [PubMed].
    [Google Scholar]
  31. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  32. Tang S.K. , Wang Y. , Lou K. , Mao P.H. , Xu L.H. , Jiang C.L. , Kim C.J. , Li W.J. . ( 2009;). Kocuria halotolerans sp. nov., an actinobacterium isolated from a saline soil in China. Int J Syst Evol Microbiol 59: 1316–1320 [CrossRef] [PubMed].
    [Google Scholar]
  33. Thompson J.D. , Gibson T.J. , Plewniak F. , Jeanmougin F. , Higgins D.G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  34. Tittsler R.P. , Sandholzer L.A. . ( 1936;). The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31: 575–580.
    [Google Scholar]
  35. Tvrzová L. , Schumann P. , Sedlácek I. , Pácová Z. , Spröer C. , Verbarg S. , Kroppenstedt R.M. . ( 2005;). Reclassification of strain CCM 132, previously classified as Kocuria varians, as Kocuria carniphila sp. nov.. Int J Syst Evol Microbiol 55: 139–142 [CrossRef] [PubMed].
    [Google Scholar]
  36. Wayne L.G. , Brenner D.J. , Colwell R.R. , Grimont P.A.D. , Kandler O. , Krichevsky M.I. , Moore L.H. , Moore W.E.C. , Murray R.G.E. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  37. Xu X.W. , Wu Y.H. , Zhou Z. , Wang C.S. , Zhou Y.G. , Zhang H.B. , Wang Y. , Wu M. . ( 2007;). Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57: 1619–1624 [CrossRef] [PubMed].
    [Google Scholar]
  38. Yun J.H. , Roh S.W. , Jung M.J. , Kim M.S. , Park E.J. , Shin K.S. , Nam Y.D. , Bae J.W. . ( 2011;). Kocuria salsicia sp. nov., isolated from salt-fermented seafood. Int J Syst Evol Microbiol 61: 286–289 [CrossRef] [PubMed].
    [Google Scholar]
  39. Zhou Y. , Dong J. , Wang X. , Huang X. , Zhang K.Y. , Zhang Y.Q. , Guo Y.F. , Lai R. , Li W.J. . ( 2007;). Chryseobacterium flavum sp. nov., isolated from polluted soil. Int J Syst Evol Microbiol 57: 1765–1769 [CrossRef] [PubMed].
    [Google Scholar]
  40. Zhou G. , Luo X. , Tang Y. , Zhang L. , Yang Q. , Qiu Y. , Fang C. . ( 2008;). Kocuria flava sp. nov. and Kocuria turfanensis sp. nov., airborne actinobacteria isolated from Xinjiang, China. Int J Syst Evol Microbiol 58: 1304–1307 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000372
Loading
/content/journal/ijsem/10.1099/ijs.0.000372
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error