1887

Abstract

Strain Kp5.2 is an aerobic, Gram-negative soil bacterium that was isolated in Freiberg, Saxony, Germany. The cells were motile and rod-shaped. Optimal growth was observed at 20–30 °C. The fatty acids of strain Kp5.2 comprised mainly Cω7 and summed feature 3 (Cω7/iso-C 2-OH). The major respiratory quinone was Q-10. The major polar lipids of strain Kp5.2 were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and sphingoglycolipid. The G+C content of the genomic DNA was 63.7 %. Sequencing of the 16S rRNA gene of strain Kp5.2 allowed its classification into the family , and the sequence showed the highest similarity to those of members of the genus , with SC13E-S71 (99.15 % similarity), Gsoil 124 (98.96 %), S37 (98.90 %) and BZ30 (98.51 %) as the nearest neighbours. DNA–DNA hybridization and further characterization revealed that strain Kp5.2 can be considered to represent a novel species of the genus . Hence, the name sp. nov. is proposed, with the type strain Kp5.2 ( = DSM 28731 = LMG 28478).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000371
2015-09-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/3008.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000371&mimeType=html&fmt=ahah

References

  1. Alias-Villegas C. , Jurado V. , Laiz L. , Saiz-Jimenez C. . ( 2013;). Sphingopyxis italica sp. nov., isolated from Roman catacombs. Int J Syst Evol Microbiol 63: 2565–2569 [CrossRef] [PubMed].
    [Google Scholar]
  2. Altschul S.F. , Gish W. , Miller W. , Myers E.W. , Lipman D.J. . ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  3. Altschul S.F. , Madden T.L. , Schäffer A.A. , Zhang J. , Zhang Z. , Miller W. , Lipman D.J. . ( 1997;). Gapped blast psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402 [CrossRef] [PubMed].
    [Google Scholar]
  4. Busse H.-J. , Kämpfer P. , Denner E.B.M. . ( 1999;). Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 23: 242–251 [CrossRef] [PubMed].
    [Google Scholar]
  5. Campbell J.W. , Morgan-Kiss R.M. , Cronan J.E. Jr . ( 2003;). A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic beta-oxidation pathway. Mol Microbiol 47: 793–805 [CrossRef] [PubMed].
    [Google Scholar]
  6. Cashion P. , Holder-Franklin M.A. , McCully J. , Franklin M. . ( 1977;). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81: 461–466 [CrossRef] [PubMed].
    [Google Scholar]
  7. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dorn E. , Hellwig M. , Reineke W. , Knackmuss H.-J. . ( 1974;). Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99: 61–70 [CrossRef] [PubMed].
    [Google Scholar]
  9. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  10. Gaby W.L. , Hadley C. . ( 1957;). Practical laboratory test for the identification of Pseudomonas aeruginosa . J Bacteriol 74: 356–358 [PubMed].
    [Google Scholar]
  11. Gerhardt P. , Murray R.G.E. , Costilow R.N. , Nester E.W. , Wood W.A. , Krieg N.R. , Phillips G.B. . ( 1981;). Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  12. Godoy F. , Vancanneyt M. , Martínez M. , Steinbüchel A. , Swings J. , Rehm B.H.A. . ( 2003;). Sphingopyxis chilensis sp. nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov. Int J Syst Evol Microbiol 53: 473–477 [CrossRef] [PubMed].
    [Google Scholar]
  13. Gordon D. . ( 2003;). Viewing and editing assembled sequences using Consed. . In Current Protocols in Bioinformatics, pp. 11.2.1–11.2.43 Chichester: Wiley; [CrossRef].
    [Google Scholar]
  14. Gordon D. , Abajian C. , Green P. . ( 1998;). Consed: a graphical tool for sequence finishing. Genome Res 8: 195–202 [CrossRef] [PubMed].
    [Google Scholar]
  15. Gram C. . ( 1884;). Über die isolirte Färbung der Schizomyceten in Schnitt-und Trockenpräparaten. Fortschr Med 2: 185–884 (in German).
    [Google Scholar]
  16. Halebian S. , Harris B. , Finegold S.M. , Rolfe R.D. . ( 1981;). Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. J Clin Microbiol 13: 444–448 [PubMed].
    [Google Scholar]
  17. Huss V.A.R. , Festl H. , Schleifer K.H. . ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kämpfer P. , Kroppenstedt R.M. . ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42: 989–1005 [CrossRef].
    [Google Scholar]
  19. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kluge A.G. , Farris F.S. . ( 1969;). Quantitative phyletics and the evolution of anurans. Syst Zool 18: 1–32 [CrossRef].
    [Google Scholar]
  21. Kroppenstedt R.M. . ( 1985;). Fatty acid and menaquinone analysis of actinomycetes and related organisms. . In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series vol. 20), pp. 173–199. Edited by Goodfellow M. , Minnikin D. E. . New York: Academic Press;.
    [Google Scholar]
  22. Kuykendall L.D. , Roy M.A. , O'Neill J.J. , Devine T.E. . ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38: 358–361 [CrossRef].
    [Google Scholar]
  23. Lee H.W. , Ten I.L. , Jung H.M. , Liu Q.M. , Im W.T. , Lee S.T. . ( 2008;). Sphingopyxis panaciterrae sp. nov., isolated from soil from ginseng field. J Microbiol Biotechnol 18: 1011–1015 [PubMed].
    [Google Scholar]
  24. Meyer F. , Goesmann A. , McHardy A.C. , Bartels D. , Bekel T. , Clausen J. , Kalinowski J. , Linke B. , Rupp O. , other authors , other authors . ( 2003;). GenDB - an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31: 2187–2195 [CrossRef] [PubMed].
    [Google Scholar]
  25. Miller L.T. . ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584–586 [PubMed].
    [Google Scholar]
  26. Oelschlägel M. , Gröning J.A.D. , Tischler D. , Kaschabek S.R. , Schlömann M. . ( 2012;). Styrene oxide isomerase of Rhodococcus opacus 1CP, a highly stable and considerably active enzyme. Appl Environ Microbiol 78: 4330–4337 [CrossRef] [PubMed].
    [Google Scholar]
  27. Oelschlägel M. , Zimmerling J. , Schlömann M. , Tischler D. . ( 2014;). Styrene oxide isomerase of Sphingopyxis sp. Kp5.2. Microbiology 160: 2481–2491 [CrossRef] [PubMed].
    [Google Scholar]
  28. Oelschlägel M. , Kaschabek S.R. , Zimmerling J. , Schlömann M. , Tischler D. . ( 2015;). Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria. Biotechnol Rep (Amst) 6: 20–26 [CrossRef].
    [Google Scholar]
  29. Rachel R. , Meyer C. , Klingl A. , Gürster S. , Heimerl T. , Wasserburger N. , Burghardt T. , Küper U. , Bellack A. , other authors . ( 2010;). Analysis of the ultrastructure of archaea by electron microscopy. Methods Cell Biol 96: 47–69 [PubMed].[CrossRef]
    [Google Scholar]
  30. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  31. Sambrook J. , Russell D.W. , Irwin N. , Janssen K.A. . ( 2001;). Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor Laboratory, NY: Cold Spring Harbor;.
    [Google Scholar]
  32. Snell K.D. , Feng F. , Zhong L. , Martin D. , Madison L.L. . ( 2002;). YfcX enables medium-chain-length poly(3-hydroxyalkanoate) formation from fatty acids in recombinant Escherichia coli fadB strains. J Bacteriol 184: 5696–5705 [CrossRef] [PubMed].
    [Google Scholar]
  33. Takeuchi M. , Hamana K. , Hiraishi A. . ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51: 1405–1417 [PubMed].[CrossRef]
    [Google Scholar]
  34. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  35. Teufel R. , Mascaraque V. , Ismail W. , Voss M. , Perera J. , Eisenreich W. , Haehnel W. , Fuchs G. . ( 2010;). Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc Natl Acad Sci U S A 107: 14390–14395 [CrossRef] [PubMed].
    [Google Scholar]
  36. Tindall B.J. . ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  37. Tindall B.J. . ( 1990b;). Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  38. Tindall B.J. , Sikorski J. , Smibert R.M. , Krieg N.R. . ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology , 3rd edn.., pp. 330–393. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. , Schmidt T. M. , Snyder L. R. . Washington, DC: American Society for Microbiology; [CrossRef].
    [Google Scholar]
  39. Wayne L.G. , Brenner D.J. , Colwell R.R. , Grimont P.A.D. , Kandler O. , Krichevsky M.I. , Moore L.H. , Moore W.E.C. , Murray R.G.E. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  40. Wilson K. . ( 2001;). Preparation of genomic DNA from bacteria. . In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5 Chichester: Wiley; [CrossRef].
    [Google Scholar]
  41. Yabuuchi E. , Yano I. , Oyaizu H. , Hashimoto Y. , Ezaki T. , Yamamoto H. . ( 1990;). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34: 99–119 [CrossRef] [PubMed].
    [Google Scholar]
  42. Yang S.-Y. , Li J. , He X.-Y. , Cosloy S.D. , Schulz H. . ( 1988;). Evidence that the fadB gene of the fadAB operon of Escherichia coli encodes 3-hydroxyacyl-coenzyme A (CoA) epimerase, (3-cis- (2-trans-enoyl-CoA isomerase, and enoyl-CoA hydratase in addition to 3-hydroxyacyl-CoA dehydrogenase. J Bacteriol 170: 2543–2548 [PubMed].
    [Google Scholar]
  43. Zhang D.C. , Liu H.C. , Xin Y.H. , Zhou Y.G. , Schinner F. , Margesin R. . ( 2010;). Sphingopyxis bauzanensis sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 60: 2618–2622 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000371
Loading
/content/journal/ijsem/10.1099/ijs.0.000371
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error