1887

Abstract

A study was undertaken to determine the prevalence and diversity of species of the genus in pig and dairy cattle manure, which led to the identification of strains AF1440, AF1430 and AF1581. Initially identified as based on colony morphology and initial PCR-confirmation tests, analyses of 16S rRNA gene sequences of these strains confirmed that they belonged to the genus and were different from all known species of the genus. The isolates formed a distinct group within the genus based on their 16S rRNA, , , , and gene sequences and fatty acid profiles. Their unique species status was further supported by physiological properties and DNA–DNA hybridization that allowed phenotypic and genotypic differentiation of the strains from other species of the genus . The isolates were found to be oxidase, catalase and esterase positive and urease negative; they grew well at 30 °C under microaerophilic conditions and produced nitrite and acetoin. Based on their common origin and various physiological properties, it is proposed that the isolates are classified as members of a novel species with the name sp. nov. The type strain is AF1440 ( = LMG 28516 = CCUG 66485); strains AF1430 ( = LMG 28515 = CCUG 66486) and AF1581 ( = LMG 28517 = CCUG 66487) are reference strains.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000318
2015-08-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/8/2709.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000318&mimeType=html&fmt=ahah

References

  1. Adam Z., Whiteduck-Leveillee K., Cloutier M., Tambong J.T., Chen W., Lewis C.T., Lévesque C.A., Topp E., Lapen D.R., authors other. ( 2014;). Draft genome sequences of three Arcobacter strains of pig and dairy cattle manure origin. Genome Announc 2: e00377–e00314 [CrossRef][PubMed].
    [Google Scholar]
  2. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402 [CrossRef][PubMed].
    [Google Scholar]
  3. Bruce K.D., Hiorns W.D., Hobman J.L., Osborn A.M., Strike P., Ritchie D.A.. ( 1992;). Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl Environ Microbiol 58: 3413–3416 [PubMed].
    [Google Scholar]
  4. Chao J., Wolfaardt G.M., Arts M.T.. ( 2010;). Characterization of Pseudomonas aeruginosa fatty acid profiles in biofilms and batch planktonic cultures. Can J Microbiol 56: 1028–1039 [CrossRef][PubMed].
    [Google Scholar]
  5. CLSI ( 2010;). Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated fastidious bacteria; Approved Guideline, 2nd edn. CLSI document M45-A2 Wayne, PA: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  6. CLSI ( 2011;). Performance standards for antimicrobial susceptibility testing 21st Informational Supplement. CLSI M100-S21 Wayne, PA: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  7. Collado L., Levican A., Perez J., Figueras M.J.. ( 2011;). Arcobacter defluvii sp. nov., isolated from sewage samples. Int J Syst Evol Microbiol 61: 2155–2161 [CrossRef][PubMed].
    [Google Scholar]
  8. Douidah L., De Zutter L., Vandamme P., Houf K.. ( 2010;). Identification of five human and mammal associated Arcobacter species by a novel multiplex-PCR assay. J Microbiol Methods 80: 281–286 [CrossRef][PubMed].
    [Google Scholar]
  9. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef][PubMed].
    [Google Scholar]
  10. Fera M.T., La Camera E., Carbone M., Malara D., Pennisi M.G.. ( 2009;). Pet cats as carriers of Arcobacter spp. in Southern Italy. J Appl Microbiol 106: 1661–1666 [CrossRef][PubMed].
    [Google Scholar]
  11. Figueras M.J., Collado L., Levican A., Perez J., Solsona M.J., Yustes C.. ( 2011;). Arcobacter molluscorum sp. nov., a new species isolated from shellfish. Syst Appl Microbiol 34: 105–109 [CrossRef][PubMed].
    [Google Scholar]
  12. Greco-Stewart V.S., Brown E.E., Parr C., Kalab M., Jacobs M.R., Yomtovian R.A., Ramírez-Arcos S.M.. ( 2012;). Serratia marcescens strains implicated in adverse transfusion reactions form biofilms in platelet concentrates and demonstrate reduced detection by automated culture. Vox Sang 102: 212–220 [CrossRef][PubMed].
    [Google Scholar]
  13. Harmon K.M., Wesley I.V.. ( 1996;). Identification of Arcobacter isolates by PCR. Lett Appl Microbiol 23: 241–244 [CrossRef][PubMed].
    [Google Scholar]
  14. Hayat M.A.. ( 1989;). Principles and Techniques of Electron Microscopy: Biological Applications, 3rd edn. Boca Raton, FL: CRC Press;.
    [Google Scholar]
  15. Hill J.E., Paccagnella A., Law K., Melito P.L., Woodward D.L., Price L., Leung A.H., Ng L.K., Hemmingsen S.M., Goh S.H.. ( 2006;). Identification of Campylobacter spp. and discrimination from Helicobacter Arcobacter spp. by direct sequencing of PCR-amplified cpn60 sequences and comparison to cpnDB, a chaperonin reference sequence database. J Med Microbiol 55: 393–399 [CrossRef][PubMed].
    [Google Scholar]
  16. Ho H.T.K., Lipman L.J., Gaastra W.. ( 2006;). Arcobacter, what is known and unknown about a potential foodborne zoonotic agent!. Vet Microbiol 115: 1–13 [CrossRef][PubMed].
    [Google Scholar]
  17. Houf K., Stephan R.. ( 2007;). Isolation and characterization of the emerging foodborn pathogen Arcobacter from human stool. J Microbiol Methods 68: 408–413 [CrossRef][PubMed].
    [Google Scholar]
  18. Houf K., Tutenel A., De Zutter L., Van Hoof J., Vandamme P.. ( 2000;). Development of a multiplex PCR assay for the simultaneous detection and identification of Arcobacter butzleri Arcobacter cryaerophilus Arcobacter skirrowii. FEMS Microbiol Lett 193: 89–94 [CrossRef][PubMed].
    [Google Scholar]
  19. Houf K., Devriese L.A., De Zutter L., Van Hoof J., Vandamme P.. ( 2001;). Development of a new protocol for the isolation and quantification of Arcobacter species from poultry products. Int J Food Microbiol 71: 189–196 [CrossRef][PubMed].
    [Google Scholar]
  20. Houf K., De Zutter L., Van Hoof J., Vandamme P.. ( 2002;). Assessment of the genetic diversity among arcobacters isolated from poultry products by using two PCR-based typing methods. Appl Environ Microbiol 68: 2172–2178 [CrossRef][PubMed].
    [Google Scholar]
  21. Houf K., On S.L., Coenye T., Mast J., Van Hoof J., Vandamme P.. ( 2005;). Arcobacter cibarius sp. nov., isolated from broiler carcasses. Int J Syst Evol Microbiol 55: 713–717 [CrossRef][PubMed].
    [Google Scholar]
  22. Houf K., On S.L., Coenye T., Debruyne L., De Smet S., Vandamme P.. ( 2009;). Arcobacter thereius sp. nov., isolated from pigs and ducks. Int J Syst Evol Microbiol 59: 2599–2604 [CrossRef][PubMed].
    [Google Scholar]
  23. Kabeya H., Maruyama S., Morita Y., Kubo M., Yamamoto K., Arai S., Izumi T., Kobayashi Y., Katsube Y., Mikami T.. ( 2003;). Distribution of Arcobacter species among livestock in Japan. Vet Microbiol 93: 153–158 [CrossRef][PubMed].
    [Google Scholar]
  24. Kim H.M., Hwang C.Y., Cho B.C.. ( 2010;). Arcobacter marinus sp. nov. Int J Syst Evol Microbiol 60: 531–536 [CrossRef][PubMed].
    [Google Scholar]
  25. Kluge A.G., Farris F.S.. ( 1969;). Quantitative phyletics and the evolution of anurans. Syst Zool 18: 1–32 [CrossRef].
    [Google Scholar]
  26. Korczak B.M., Stieber R., Emler S., Burnens A.P., Frey J., Kuhnert P.. ( 2006;). Genetic relatedness within the genus Campylobacter inferred from rpoB sequences. Int J Syst Evol Microbiol 56: 937–945 [CrossRef][PubMed].
    [Google Scholar]
  27. Lanave C., Preparata G., Sacone C., Serio G.. ( 1984;). A new method for calculating evolutionary substitution rates. J Mol Evol 20: 86–93 [CrossRef][PubMed].
    [Google Scholar]
  28. Lee C., Agidi S., Marion J.W., Lee J.. ( 2012;). Arcobacter in Lake Erie beach waters: an emerging gastrointestinal pathogen linked with human-associated fecal contamination. Appl Environ Microbiol 78: 5511–5519 [CrossRef][PubMed].
    [Google Scholar]
  29. Levican A., Rubio-Arcos S., Martinez-Murcia A., Collado L., Figueras M.J.. ( 2015;). Arcobacter ebronensis sp. nov. and Arcobacter aquimarinus sp. nov., two new species isolated from marine environment. Syst Appl Microbiol 38: 30–35 [CrossRef][PubMed].
    [Google Scholar]
  30. On S.L., Stacey A., Smyth J.. ( 1995;). Isolation of Arcobacter butzleri from a neonate with bacteraemia. J Infect 31: 225–227 [CrossRef][PubMed].
    [Google Scholar]
  31. Prakash O., Verma M., Sharma P., Kumar M., Kumari K., Singh A., Kumari H., Jit S., Gupta S.K., authors other. ( 2007;). Polyphasic approach of bacterial classification – an overview of recent advances. Indian J Microbiol 47: 98–108 [CrossRef][PubMed].
    [Google Scholar]
  32. Ramisse V., Balandreau J., Thibault F., Vidal D., Vergnaud G., Normand P.. ( 2003;). DNA-DNA hybridization study of Burkholderia species using genomic DNA macro-array analysis coupled to reverse genome probing. Int J Syst Evol Microbiol 53: 739–746 [CrossRef][PubMed].
    [Google Scholar]
  33. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126–19131 [CrossRef][PubMed].
    [Google Scholar]
  34. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  35. Sasi Jyothsna T.S., Rahul K., Ramaprasad E.V.V., Sasikala Ch., Ramana Ch.V.. ( 2013;). Arcobacter anaerophilus sp. nov., isolated from an estuarine sediment and emended description of the genus Arcobacter. Int J Syst Evol Microbiol 63: 4619–4625 [CrossRef][PubMed].
    [Google Scholar]
  36. Schneider C.A., Rasband W.S., Eliceiri K.W.. ( 2012;). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675 [CrossRef][PubMed].
    [Google Scholar]
  37. Stackebrandt E., Goebel B.M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  38. Tambong J.T., de Cock A.W.A.M., Tinker N.A., Lévesque C.A.. ( 2006;). Oligonucleotide array for identification and detection of Pythium species. Appl Environ Microbiol 72: 2691–2706 [CrossRef][PubMed].
    [Google Scholar]
  39. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef][PubMed].
    [Google Scholar]
  40. Teeling H., Meyerdierks A., Bauer M., Amann R., Glöckner F.O.. ( 2004;). Application of tetranucleotide frequencies for the assignment of genomic fragments. Environ Microbiol 6: 938–947 [CrossRef][PubMed].
    [Google Scholar]
  41. Van den Bulck K., Decostere A., Baele M., Driessen A., Debongnie J.C., Burette A., Stolte M., Ducatelle R., Haesebrouck F.. ( 2005;). Identification of non-Helicobacter pylori spiral organisms in gastric samples from humans, dogs, and cats. J Clin Microbiol 43: 2256–2260 [CrossRef][PubMed].
    [Google Scholar]
  42. Van Driessche E., Houf K., Vangroenweghe F., De Zutter L., Van Hoof J.. ( 2005;). Prevalence, enumeration and strain variation of Arcobacter species in the faeces of healthy cattle in Belgium. Vet Microbiol 105: 149–154 [CrossRef][PubMed].
    [Google Scholar]
  43. Vandamme P., Falsen E., Rossau R., Hoste B., Segers P., Tytgat R., De Ley J.. ( 1991;). Revision of Campylobacter Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov.. Int J Syst Bacteriol 41: 88–103 [CrossRef][PubMed].
    [Google Scholar]
  44. Vandamme P., Dewhirst F.E., Paster B.J., On S.L.W.. ( 2005;). Genus II. Arcobacter Vandamme, Falsen, Rossau, Segers, Tytgat and De Ley 1991a, 99VP. [CrossRef] In Bergey's Manual of Systematic Bacteriology, 2nd edn.., vol. 2C. pp. 1161–1165. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York: Springer;.
    [Google Scholar]
  45. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., authors other. ( 1987;). International Committee on Systematic Bacteriology, Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000318
Loading
/content/journal/ijsem/10.1099/ijs.0.000318
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error