1887

Abstract

Two novel filamentous bacteria, strains SCSIO 11157 and SCSIO 11154, were isolated from a deep-sea sediment sample. Strain SCSIO 11157 grew optimally at 55–60 °C, while strain SCSIO 11154 grew optimally at 40 °C. Both strains produced aerial and substrate mycelia. Phylogenetic analysis of the 16S rRNA gene sequences of strains SCSIO 11157 and SCSIO 11154 showed that the isolates were affiliated to the family . The two isolates contained -diaminopimelic acid as the cell-wall diamino acid, and did not have diagnostic sugars. The major polar lipids of strain SCSIO 11157 were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine and phosphatidylglycerol, and the major polar lipids of SCSIO 11154 were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant menaquinone of both strains was MK-7. The major cellular fatty acids of strain SCSIO 11157 were iso-C, Cω9 and iso-C, and strain SCSIO 11154 contained iso-C and iso-C as major fatty acids. The DNA G+C contents of strains SCSIO 11157 and SCSIO 11154 were 54.2 and 51.8 mol %, respectively. On the basis of its phenotypic and phylogenetic properties, strain SCSIO 11157 represents a novel species in the new genus, for which we propose the name gen. nov., sp. nov. The type strain of is SCSIO 11157 ( = CGMCC 1.15179 = NBRC 109939). Strain SCSIO 11154 represents a novel species of the genus , for which we propose the name sp. nov. The type strain is SCSIO 11154 ( = DSM 45903 = NBRC 109626).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000314
2015-08-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/8/2622.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000314&mimeType=html&fmt=ahah

References

  1. Addou A.N., Schumann P., Spröer C., Hacene H., Cayol J.L., Fardeau M.L.. ( 2012;). Melghirimyces algeriensis gen. nov., sp. nov., a member of the family Thermoactinomycetaceae, isolated from a salt lake. Int J Syst Evol Microbiol 62: 1491–1498 [CrossRef] [PubMed].
    [Google Scholar]
  2. Addou A.N., Schumann P., Spröer C., Bouanane-Darenfed A., Amarouche-Yala S., Hacene H., Cayol J.L., Fardeau M.L.. ( 2013;). Melghirimyces thermohalophilus sp. nov., a thermoactinomycete isolated from an Algerian salt lake. Int J Syst Evol Microbiol 63: 1717–1722 [CrossRef] [PubMed].
    [Google Scholar]
  3. Buss S.N., Cole J.A., Hannett G.E., Nazarian E.J., Nazarian L., Coorevits A., Van Landschoot A., De Vos P., Schumann P., other authors. ( 2013;). Hazenella coriacea gen. nov., sp. nov., isolated from clinical specimens. Int J Syst Evol Microbiol 63: 4087–4093 [CrossRef] [PubMed].
    [Google Scholar]
  4. Collins M.D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48: 459–470 [CrossRef].
    [Google Scholar]
  5. Collins M.D., Pirouz T., Goodfellow M., Minnikin D.E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100: 221–230 [CrossRef] [PubMed].
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  7. Dong X.Z., Cai M.Y.. ( 2001;). Manual of Systematics and Identification of General Bacteria Beijing: Science Press;.
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  10. Fitch W.M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  11. Gordon R.E.. ( 1966;). Some criteria for the recognition of Nocardia madurae (Vincent) Blanchard. J Gen Microbiol 45: 355–364 [CrossRef] [PubMed].
    [Google Scholar]
  12. Hatayama K., Shoun H., Ueda Y., Nakamura A.. ( 2005;). Planifilum fimeticola gen. nov., sp. nov. and Planifilum fulgidum sp. nov., novel members of the family ‘Thermoactinomycetaceae’ isolated from compost. Int J Syst Evol Microbiol 55: 2101–2104 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kelly K.L.. ( 1964;). Inter-Society Color Council–National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office;.
    [Google Scholar]
  14. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  15. Lányi B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19: 1–67 [CrossRef].
    [Google Scholar]
  16. Lechevalier M.P., Lechevalier H.A.. ( 1980;). The chemotaxonomy of actinomycetes. . In Actinomycete Taxonomy, pp. 227–291. Edited by Dietz A, Thayer D. W. (Society for Industrial Microbiology Special Publication no. 6) Arlington, VA: Society for Industrial Microbiology;.
    [Google Scholar]
  17. Li W.J., Xu P., Schumann P., Zhang Y.Q., Pukall R., Xu L.-H., Stackebrandt E., Jiang C.L.. ( 2007;). Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57: 1424–1428 [CrossRef] [PubMed].
    [Google Scholar]
  18. Li J., Zhang G.T., Yang J., Tian X.P., Wang F.Z., Zhang C.S., Zhang S., Li W.J.. ( 2012;). Marininema mesophilum gen. nov., sp. nov., a thermoactinomycete isolated from deep sea sediment, and emended description of the family Thermoactinomycetaceae. Int J Syst Evol Microbiol 62: 1383–1388 [CrossRef] [PubMed].
    [Google Scholar]
  19. Li J., Qin S., You Z.Q., Long L.J., Tian X.P., Wang F.Z., Zhang S.. ( 2013;). Melghirimyces profundicolus sp. nov., isolated from a deep-sea sediment. Int J Syst Evol Microbiol 63: 4552–4556 [CrossRef] [PubMed].
    [Google Scholar]
  20. Matsuo Y., Katsuta A., Matsuda S., Shizuri Y., Yokota A., Kasai H.. ( 2006;). Mechercharimyces mesophilus gen. nov., sp. nov. and Mechercharimyces asporophorigenens sp. nov., antitumour substance-producing marine bacteria, and description of Thermoactinomycetaceae fam. nov. Int J Syst Evol Microbiol 56: 2837–2842 [CrossRef] [PubMed].
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W.B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  22. Minnikin D.E., Collins M.D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas. Oerskovia and related taxa. J Appl Bacteriol 47: 87–95 [CrossRef].
    [Google Scholar]
  23. Park D.J., Dastager S.G., Lee J.C., Yeo S.-H., Yoon J.H., Kim C.J.. ( 2007;). Shimazuella kribbensis gen. nov., sp. nov., a mesophilic representative of the family Thermoactinomycetaceae. Int J Syst Evol Microbiol 57: 2660–2664 [CrossRef] [PubMed].
    [Google Scholar]
  24. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  25. Shirling E.B., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16: 313–340 [CrossRef].
    [Google Scholar]
  26. Staneck J.L., Roberts G.D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28: 226–231 [PubMed].
    [Google Scholar]
  27. Tamaoka J., Katayama-Fujimura Y., Kuraishi H.. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54: 31–36 [CrossRef].
    [Google Scholar]
  28. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  29. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  30. Tsilinsky P.. ( 1899;). On the thermophilic moulds. Ann Inst Pasteur (Paris) 13: 500–505.
    [Google Scholar]
  31. Tsubouchi T., Shimane Y., Mori K., Usui K., Hiraki T., Tame A., Uematsu K., Maruyama T., Hatada Y.. ( 2013;). Polycladomyces abyssicola gen. nov., sp. nov., a thermophilic filamentous bacterium isolated from hemipelagic sediment. Int J Syst Evol Microbiol 63: 1972–1981 [CrossRef] [PubMed].
    [Google Scholar]
  32. Uchida K., Aida K.. ( 1977;). Acyl type of bacterial cell wall: its simple identification by colorimetric method. J Gen Appl Microbiol 23: 249–260 [CrossRef].
    [Google Scholar]
  33. von Jan M., Riegger N., Pötter G., Schumann P., Verbarg S., Spröer C., Rohde M., Lauer B., Labeda D.P., Klenk H.P.. ( 2011;). Kroppenstedtia eburnea gen. nov., sp. nov., a thermoactinomycete isolated by environmental screening, and emended description of the family Thermoactinomycetaceae Matsuo et al.2006 emend. Yassin et al. 2009. Int J Syst Evol Microbiol 61: 2304–2310 [CrossRef] [PubMed].
    [Google Scholar]
  34. Xu P., Li W.J., Tang S.K., Zhang Y.Q., Chen G.Z., Chen H.H., Xu L.H., Jiang C.L.. ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55: 1149–1153 [CrossRef] [PubMed].
    [Google Scholar]
  35. Yassin A.F., Hupfer H., Klenk H.P., Siering C.. ( 2009;). Desmospora activa gen. nov., sp. nov., a thermoactinomycete isolated from sputum of a patient with suspected pulmonary tuberculosis, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006. Int J Syst Evol Microbiol 59: 454–459 [CrossRef] [PubMed].
    [Google Scholar]
  36. Yoon J.H., Kim I.G., Shin Y.K., Park Y.H.. ( 2005;). Proposal of the genus Thermoactinomyces sensu stricto and three new genera. Laceyella, Thermoflavimicrobium Seinonella, on the basis of phenotypic, phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 55: 395–400 [CrossRef] [PubMed].
    [Google Scholar]
  37. Yu T.T., Zhang B.H., Yao J.C., Tang S.K., Zhou E.M., Yin Y.R., Wei D.Q., Ming H., Li W.J.. ( 2012;). Lihuaxuella thermophila gen. nov., sp. nov., isolated from a geothermal soil sample in Tengchong, Yunnan, south-west China. Antonie van Leeuwenhoek 102: 711–718 [CrossRef] [PubMed].
    [Google Scholar]
  38. Zarparvar P., Amoozegar M.A., Nikou M.M., Schumann P., Ventosa A.. ( 2014;). Salinithrix halophila gen. nov., sp. nov., a halophilic bacterium in the family Thermoactinomycetaceae. Int J Syst Evol Microbiol 64: 4115–4119 [CrossRef] [PubMed].
    [Google Scholar]
  39. Zhou E.M., Yu T.T., Liu L., Ming H., Yin Y.R., Dong L., Tseng M., Nie G.X., Li W.J.. ( 2014;). Geothermomicrobium terrae gen. nov., sp. nov., a novel member of the family Thermoactinomycetaceae. Int J Syst Evol Microbiol 64: 2998–3004 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000314
Loading
/content/journal/ijsem/10.1099/ijs.0.000314
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error