1887

Abstract

An aerobic, Gram-stain-positive actinomycete, designated strain 3SM4-07, was characterized using a polyphasic taxonomic approach. The strain produced branching mycelium which fragmented into short or elongated rods. The whole-cell hydrolysates contained -2,6-diaminopimelic acid as the diagnostic diamino acid, with glucose and ribose as the main sugars. The predominant cellular fatty acids were anteiso-C, iso-C and iso-C.The predominant menaquinone was MK-9(H). Phospholipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. Mycolic acids were absent. The DNA G+C content was 72.3 mol%. Strain 3SM4-07 formed a phylogenetic line within the genus and its 16S rRNA gene sequence was related most closely to D8-87 (99.0 % similarity), 15-Je-017 (98.8 %), YIM 61503 (98.6 %) and YIM 002 (98.6 %). However, mean DNA–DNA hybridization values revealed that strain 3SM4-07 differed from the closest species previously described in this genus. Data from phenotypic, chemotaxonomic and molecular analyses between strain 3SM4-07 and recognized species of the genus indicate that strain 3SM4-07 is a representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 3SM4-07 ( = BCC 60398 = NBRC 109648).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000303
2015-08-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/8/2569.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000303&mimeType=html&fmt=ahah

References

  1. Becker B. , Lechevalier M.P. , Lechevalier H.A. . ( 1965;). Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl Microbiol 13: 236–243 [PubMed].
    [Google Scholar]
  2. Cross T. , Maciver A.M. , Lacey J. . ( 1968;). The thermophilic actinomycetes in mouldy hay: Micropolyspora faeni sp.nov. J Gen Microbiol 50: 351–359 [CrossRef] [PubMed].
    [Google Scholar]
  3. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef].
    [Google Scholar]
  4. Fitch W.M. . ( 1971;). Toward defining the course of evolution: minimal change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  5. Gordon R.E. , Mihm J.M. . ( 1957;). A comparative study of some strains received as Nocardiae. J Bacteriol 73: 15–27 [PubMed].
    [Google Scholar]
  6. Gordon R.E. , Barnett D.A. , Handerhan J.E. , Pang C.H.-N. . ( 1974;). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24: 54–63 [CrossRef].
    [Google Scholar]
  7. Hasegawa T. , Takizawa M. , Tanida S. . ( 1983;). A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29: 319–322 [CrossRef].
    [Google Scholar]
  8. Jukes T.H. , Cantor C.R. . ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism vol. 3, pp. 21–132 [CrossRef] Edited by Munro H. N. . .
    [Google Scholar]
  9. Kämpfer P. , Kroppenstedt R.M. . ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42: 989–1005 [CrossRef].
    [Google Scholar]
  10. Kämpfer P. , Schäfer J. , Lodders N. , Martin K. . ( 2011;). Jiangella muralis sp. nov., from an indoor environment. Int J Syst Evol Microbiol 61: 128–131 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kataoka M. , Ueda K. , Kudo T. , Seki T. , Yoshida T. . ( 1997;). Application of the variable region in 16S rDNA to create an index for rapid species identification in the genus Streptomyces . FEMS Microbiol Lett 151: 249–255 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kelly K.L. , Judd D.B. . ( 1976;). Color: Universal Language and Dictionary of Names Gaithersburg, MD: National Bureau of Standards;.[CrossRef]
    [Google Scholar]
  13. Kieser T. , Bibb M.J. , Buttner M.J. , Chater K.F. , Hopwood D.A. . ( 2000;). Practical Streptomyces Genetics Norwich: John Innes Foundation;.
    [Google Scholar]
  14. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , authors other . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kuykendall L.D. , Roy M.A. , O'Neill J.J. , Devine T.E. . ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38: 358–361 [CrossRef].
    [Google Scholar]
  16. Lechevalier M.P. , Lechevalier H. . ( 1970;). Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20: 435–443 [CrossRef].
    [Google Scholar]
  17. Lee S.D. . ( 2008;). Jiangella alkaliphila sp. nov., an actinobacterium isolated from a cave. Int J Syst Evol Microbiol 58: 1176–1179 [CrossRef] [PubMed].
    [Google Scholar]
  18. Matsumoto M. , Iwama D. , Arakaki A. , Tanaka A. , Tanaka T. , Miyashita H. , Matsunaga T. . ( 2011;). Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment. Int J Syst Evol Microbiol 61: 2956–2961 [CrossRef] [PubMed].
    [Google Scholar]
  19. Mesbah M. , Premachandran U. , Whitman W.B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  20. Miller L.T. . ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584–586 [PubMed].
    [Google Scholar]
  21. Mingma R. , Pathom-aree W. , Trakulnaleamsai S. , Thamchaipenet A. , Duangmal K. . ( 2014;). Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J Microbiol Biotechnol 30: 271–280 [CrossRef] [PubMed].
    [Google Scholar]
  22. Minnikin D.E. , O'Donnell A.G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J.K. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  23. Qin S. , Zhao G.-Z. , Li J. , Zhu W.-Y. , Xu L.-H. , Li W.-J. . ( 2009;). Jiangella alba sp. nov., an endophytic actinomycete isolated from the stem of Maytenus austroyunnanensis . Int J Syst Evol Microbiol 59: 2162–2165 [CrossRef] [PubMed].
    [Google Scholar]
  24. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
    [Google Scholar]
  25. Shirling E.B. , Gottlieb D. . ( 1966;). Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16: 313–340 [CrossRef].
    [Google Scholar]
  26. Song L. , Li W.-J. , Wang Q.-L. , Chen G.-Z. , Zhang Y.-S. , Xu L.-H. . ( 2005;). Jiangella gansuensis gen. nov., sp. nov., a novel actinomycete from a desert soil in north-west China. Int J Syst Evol Microbiol 55: 881–884 [CrossRef] [PubMed].
    [Google Scholar]
  27. Staneck J.L. , Roberts G.D. . ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28: 226–231 [CrossRef].
    [Google Scholar]
  28. Tamaoka J. , Komagata K. . ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  29. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  30. Tang S.-K. , Zhi X.-Y. , Li W.-J. . ( 2012;). Family I. Jiangellaceae . . In Bergey's Manual of Systematic Bacteriology, pp. 557–561. Edited by Whitman W. B. , Goodfellow M. , Kämpfer P. , Busse H.-J. , Trujillo M. E. , Suzuki K.-I. , Ludwig W. , Parte A. . Baltimore, MD: Williams & Wilkins;.
    [Google Scholar]
  31. Tindall B.J. . ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  32. Tindall B.J. . ( 1990b;). Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  33. Tomiyasu I. . ( 1982;). Mycolic acid composition and thermally adaptative changes in Nocardia asteroides . J Bacteriol 151: 828–837 [PubMed].
    [Google Scholar]
  34. Wang C. , Xu X.-X. , Qu Z. , Wang H.-L. , Lin H.-P. , Xie Q.-Y. , Ruan J.-S. , Hong K. . ( 2011;). Micromonospora rhizosphaerae sp. nov., isolated from mangrove rhizosphere soil. Int J Syst Evol Microbiol 61: 320–324 [CrossRef] [PubMed].
    [Google Scholar]
  35. Wayne L.G. , Brenner D.J. , Colwell R.R. , Grimont P.A.D. , Kandler O. , Krichevsky M.I. , Moore L.H. , Moore W.E.C. , Murray R.G.E. , authors other . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000303
Loading
/content/journal/ijsem/10.1099/ijs.0.000303
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error