1887

Abstract

Two strains of haloalkaliphilic homoacetogenic bacteria capable of iron reduction, Z-7101 and Z-7102, were isolated from soda lake Tanatar III (Altai, Russia). Cells of both strains were flexible, motile, Gram-negative, spore-forming rods. The strains were mesophilic and obligately alkaliphilic: the pH range for growth was 8.5–10.2 (pHopt 9.8). Growth depended on carbonate and chloride ions. The strains were able to grow chemolithoautotrophically on H+CO, producing acetate as the only metabolic product. In medium with carbonates as the only potential electron acceptor, the following substrates were utilized for chemo-organotrophic growth: pyruvate, lactate, ethanol, 1-propanol, ethylene glycol and 1-butanol. Strain Z-7101 was able to reduce nitrate, selenate, thiosulfate and anthraquinone 2,6-disulfonate with ethanol as an electron donor. It was also able to reduce synthesized ferrihydrite to siderite with molecular hydrogen or organic compounds, including acetate and formate, as electron donors. It was able to reduce S with acetate or formate as electron donors. The DNA G+C content of strain Z-7101 was 34.6 mol%. 16S rRNA gene sequence analysis showed that strains Z-7101 and Z-7102 were members of the order and family , clustering with Z-7100 (98.9–98.4 % similarity). DNA–DNA hybridization was 63.0 % between strain Z-7101 and Z-7100. Based on morphological and physiological differences from Z-7100 and the results of phylogenetic analysis and DNA–DNA hybridization, it is proposed to assign strains Z-7101 and Z-7102 ( = DSM 26052 = VKM B-2790) to the novel species sp. nov. The type strain is strain Z-7101 ( = DSM 26031 = VKM B-2766).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000278
2015-08-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/8/2432.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000278&mimeType=html&fmt=ahah

References

  1. Beukes N.J. , Gutzmer J. . ( 2008;). Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. . In Banded Iron Formation-Related High-Grade Iron Ore Reviews in Economic Geology vol. 15, pp. 5–47. Edited by Hagemann S. , Rosiere C. , Gutzmer J. , Beukes N. J. . Chelsea, MI: Society of Economic Geologists;.
    [Google Scholar]
  2. Boulygina E.S. , Kuznetsov B.B. , Marusina A.I. , Tourova T.P. , Kravchenko I.K. , Bykova S.A. , Kolganova T.V. , Galchenko V.F. . ( 2002;). The study of nucleotide sequences of nifH genes from some methanotrophic bacteria. Microbiology (English translation of Mikrobiologiia) 71: 425–432 [CrossRef].
    [Google Scholar]
  3. Fuchs G. . ( 1994;). Variations of the acetyl-CoA pathway in diversely related microorganisms that are not acetogens. . In Acetogenesis, pp. 507–520. Edited by Drake H. L. . New York: Chapman & Hall; [CrossRef].
    [Google Scholar]
  4. Hall T.A. . ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  5. Heimann A. , Johnson C.M. , Beard B.L. , Valley J.W. , Roden E.E. , Spicuzza M.J. , Beukes N.J. . ( 2010;). Fe, C and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ≈ 2.5 Ga marine environments. Earth Planet Sci Lett 294: 8–18 [CrossRef].
    [Google Scholar]
  6. Kevbrin V.V. , Zavarzin G.A. . ( 1992;). The effect of sulfur compounds on growth of halophilic the homoacetic bacterium Acetohalobium arabaticum . Microbiology (English translation of Mikrobiologiia) 61: 567–571.
    [Google Scholar]
  7. Klein C. . ( 2005;). Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. Am Mineral 90: 1473–1499 [CrossRef].
    [Google Scholar]
  8. Lane D.J. . ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . Chichester: Wiley;.
    [Google Scholar]
  9. Marusina A.I. , Boulygina E.S. , Kuznetsov B.B. , Tourova T.P. , Kravchenko I.K. , Gal'chenko V.F. . ( 2001;). A system of oligonucleotide primers for the amplification of nifH genes of different taxonomic groups of prokaryotes. Microbiology (English translation of Mikrobiologiia) 70: 73–78 [CrossRef].
    [Google Scholar]
  10. Rainey F.A. , Zhilina T.N. , Boulygina E.S. , Stackebrandt E. , Tourova T.P. , Zavarzin G.A. . ( 1995;). The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov. and further taxonomic rearrangements at the genus and species level. Anaerobe 1: 185–199 [CrossRef] [PubMed].
    [Google Scholar]
  11. Sorokin D.Yu. , Tourova T.P. , Kolganova T.V. , Detkova E.N. , Galinski E.A. , Muyzer G. . ( 2011a;). Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov. Extremophiles 15: 391–401 [CrossRef] [PubMed].
    [Google Scholar]
  12. Sorokin D.Yu. , Detkova E.N. , Muyzer G. . ( 2011b;). Sulfur-dependent respiration under extremely haloalkaline conditions in soda lake ‘acetogens’ and the description of Natroniella sulfidigena sp. nov. FEMS Microbiol Lett 319: 88–95 [CrossRef] [PubMed].
    [Google Scholar]
  13. Sorokin D.Yu. , Kuenen J.G. , Muyzer G. . ( 2011c;). The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front Microbiol 2: 44 [CrossRef] [PubMed].
    [Google Scholar]
  14. Tamura K. , Nei M. . ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526 [PubMed].
    [Google Scholar]
  15. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  16. Thompson J.D. , Higgins D.G. , Gibson T.J. . ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  17. Tindall B.J. , Rosselló-Móra R. , Busse H.-J. , Ludwig W. , Kämpfer P. . ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60: 249–266 [CrossRef] [PubMed].
    [Google Scholar]
  18. Trendall A.F. . ( 2002;). The significance of iron-formation in the Precambrian stratigraphic record. . In Precambrian Sedimentary Environments: a Modern Approach to Ancient Depositional Systems (International Association of Sedimentologists Special Publication no. 33), pp. 33–66. Edited by Altermann W. , Corcoran P. L. . Oxford: Blackwell;.
    [Google Scholar]
  19. Vargas M. , Kashefi K. , Blunt-Harris E.L. , Lovley D.R. . ( 1998;). Microbiological evidence for Fe(III) reduction on early Earth. Nature 395: 65–67 [CrossRef] [PubMed].
    [Google Scholar]
  20. Wolin E.A. , Wolin M.J. , Wolfe R.S. . ( 1963;). Formation of methane by bacterial extracts. J Biol Chem 238: 2882–2886 [PubMed].
    [Google Scholar]
  21. Wood H.G. , Ljungdahl L.G. . ( 1991;). Autotrophic character of the acetogenic bacteria. . In Variations in Autotrophic life, pp. 201–250. Edited by Shively J. M. , Barton L. L. . New York: Academic Press;.
    [Google Scholar]
  22. Zavarzin G.A. . ( 1993;). Epicontinental soda lakes are probable relict biotopes of terrestrial biota formation. Microbiology (English translation of Mikrobiologiia) 62: 473–479.
    [Google Scholar]
  23. Zavarzin G.A. . ( 2007;). Alkaliphilic microbial communities. . In Proceedings of the Winogradsky Institute of Microbiology vol. 14, pp. 58–87. Edited by Gal'chenko V. F. . Moscow: Nauka (in Russian);.
    [Google Scholar]
  24. Zavarzin G.A. , Zhilina T.N. . ( 2000;). Anaerobic chemotrophic alkaliphiles. . In Journey to Diverse Microbial Worlds, pp. 191–208. Edited by Seckbach J. . Dordrecht: Kluwer Academic; [CrossRef].
    [Google Scholar]
  25. Zavarzin G.A. , Zhilina T.N. , Kevbrin V.V. . ( 1999;). The alkaliphilic microbial community and its functional diversity. Microbiology (English translation of Mikrobiologiia) 68: 503–521.
    [Google Scholar]
  26. Zavarzina D.G. , Kolganova T.V. , Boulygina E.S. , Kostrikina N.A. , Tourova T.P. , Zavarzin G.A. . ( 2006;). Geoalkalibacter ferrihydriticus gen. nov., sp. nov., the first alkaliphilic representative of the family Geobacteraceae, isolated from a soda lake. Microbiology (English translation of Mikrobiologiia) 75: 673–682 [PubMed].
    [Google Scholar]
  27. Zavarzina D.G. , Tourova T.P. , Kolganova T.V. , Boulygina E.S. , Zhilina T.N. . ( 2009;). Description of Anaerobacillus alkalilacustre gen. nov., sp. nov. – strictly anaerobic diazotrophic bacillus isolated from soda lake and transfer of Bacillus arseniciselenatis Bacillus macyae, and Bacillus alkalidiazotrophicus to Anaerobacillus as the new combinations A. arseniciselenatis comb. nov., A. macyae comb. nov., and A. alkalidiazotrophicus comb. nov. Microbiology (English translation of Mikrobiologiia) 78: 723–731 [CrossRef].
    [Google Scholar]
  28. Zavarzina D.G. , Zhilina T.N. , Kuznetsov B.B. , Kolganova T.V. , Osipov G.A. , Kotelev M.S. , Zavarzin G.A. . ( 2013;). Natranaerobaculum magadiense gen. nov., sp. nov., an anaerobic, alkalithermophilic bacterium from soda lake sediment. Int J Syst Evol Microbiol 63: 4456–4461 [CrossRef] [PubMed].
    [Google Scholar]
  29. Zhilina T.N. , Zavarzin G.A. , Detkova E.N. , Rainey F.A. . ( 1996;). Natroniella acetigena gen. nov., sp. nov., an extremely haloalkaliphilic, homoacetic bacterium: a new member of Haloanaerobiales . Curr Microbiol 32: 320–326 [CrossRef] [PubMed].
    [Google Scholar]
  30. Zhilina T.N. , Detkova E.N. , Rainey F.A. , Osipov G.A. , Lysenko A.M. , Kostrikina N.A. , Zavarzin G.A. . ( 1998;). Natronoincola histidinovorans gen. nov., sp. nov., a new alkaliphilic acetogenic anaerobe. Curr Microbiol 37: 177–185 [CrossRef] [PubMed].
    [Google Scholar]
  31. Zhilina T.N. , Zavarzina D.G. , Kolganova T.V. , Tourova T.P. , Zavarzin G.A. . ( 2005;). Candidatus Contubernalis alkalaceticum, an obligately syntrophic alkaliphilic bacterium capable of anaerobic acetate oxidation in a coculture with Desulfonatronum cooperativum . Microbiology (English translation of Mikrobiologiia) 74: 695–703 [PubMed].
    [Google Scholar]
  32. Zhilina T.N. , Zavarzina D.G. , Kolganova T.V. , Lysenko A.M. , Tourova T.P. . ( 2009a;). Alkaliphilus peptidifermentans sp. nov., a new alkaliphilic bacterial soda lake isolate capable of peptide fermentation and Fe(III) reduction. Microbiology (English translation of Mikrobiologiia) 78: 445–454 [CrossRef].
    [Google Scholar]
  33. Zhilina T.N. , Zavarzina D.G. , Osipov G.A. , Kostrikina N.A. , Tourova T.P. . ( 2009b;). Natronincola ferrireducens sp. nov., and Natronincola peptidivorans sp. nov., new anaerobic, alkaliphilic, peptolytic iron-reducing bacteria isolated from soda lake. Microbiology (English translation of Mikrobiologiia) 78: 455–467 [CrossRef].
    [Google Scholar]
  34. Zhilina T.N. , Zavarzina D.G. , Panteleeva A.N. , Osipov G.A. , Kostrikina N.A. , Tourova T.P. , Zavarzin G.A. . ( 2012;). Fuchsiella alkaliacetigena gen. nov., sp. nov., an alkaliphilic, lithoautotrophic homoacetogen from a soda lake. Int J Syst Evol Microbiol 62: 1666–1673 [CrossRef] [PubMed].
    [Google Scholar]
  35. Zhilina T.N. , Zavarzina D.G. , Kevbrin V.V. , Kolganov T.V. . ( 2013;). Methanocalculus natronophilus sp. nov., a new alkaliphilic hydrogenotrophic methanogenic archaeon from a soda lake, and proposal of the new family Methanocalculaceae . Microbiology (English translation of Mikrobiologiia) 82: 698–706 [PubMed].[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000278
Loading
/content/journal/ijsem/10.1099/ijs.0.000278
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error