1887

Abstract

A Gram-stain-negative, non-motile, pleomorphic rod-shaped, orange–red-pigmented, facultatively aerobic and haloalkaliphilic archaeon, strain MK13-1, was isolated from commercial rock salt imported from Pakistan. The NaCl, pH and temperature ranges for growth of strain MK13-1 were 3.0–5.2 M NaCl, pH 8.0–11.0 and 15–50 °C, respectively. Optimal growth occurred at 3.2–3.4 M NaCl, pH 9.0–9.5 and 45 °C. Addition of Mg was not required for growth. The major polar lipids of the isolate were CC and CC archaeol derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. Glycolipids were not detected. The DNA G+C content was 64.1 mol%. The 16S rRNA gene sequence of strain MK13-1 was most closely related to those of the species of the genus , CECT 7303 (95.9 % similarity), JCM 12358 (95.3 %), JCM 14978 (95.3 %) and JCM 13559 (95.3 %). The gene sequence of strain MK13-1 had < 90 % sequence similarity to those of other members of the genus . Based on the phylogenetic analysis and phenotypic characterization, strain MK13-1 may represent a novel species of the genus , for which the name sp. nov. is proposed, with the type strain MK13-1 ( = JCM 17823 = CECT 7963).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000261
2015-08-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/8/2345.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000261&mimeType=html&fmt=ahah

References

  1. Cline S.W., Schalkwyk L.C., Doolittle W.F.. ( 1989;). Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. J Bacteriol 171: 4987–4991 [PubMed].
    [Google Scholar]
  2. Dussault H.P.. ( 1955;). An improved technique for staining red halophilic bacteria. J Bacteriol 70: 484–485 [PubMed].
    [Google Scholar]
  3. Fan H., Xue Y., Ma Y., Ventosa A., Grant W.D.. ( 2004;). Halorubrum tibetense sp. nov., a novel haloalkaliphilic archaeon from Lake Zabuye in Tibet, China. Int J Syst Evol Microbiol 54: 1213–1216 [CrossRef][PubMed].
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  5. Felsenstein J.. ( 2002;). phylip (phylogeny inference package), version 3.6a. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA..
  6. Feng J., Zhou P., Zhou Y.G., Liu S.J., Warren-Rhodes K.. ( 2005;). Halorubrum alkaliphilum sp. nov., a novel haloalkaliphile isolated from a soda lake in Xinjiang, China. Int J Syst Evol Microbiol 55: 149–152 [CrossRef][PubMed].
    [Google Scholar]
  7. Gonzalez C., Gutierrez C., Ramirez C.. ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24: 710–715 [CrossRef][PubMed].
    [Google Scholar]
  8. Hu L., Pan H., Xue Y., Ventosa A., Cowan D.A., Jones B.E., Grant W.D., Ma Y.. ( 2008;). Halorubrum luteum sp. nov., isolated from Lake Chagannor, Inner Mongolia, China. Int J Syst Evol Microbiol 58: 1705–1708 [CrossRef][PubMed].
    [Google Scholar]
  9. Kamekura M.. ( 1993;). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135–161. Edited by Vreeland R. H., Hochstein L. I.. Boca Raton, FL: CRC Press;.
    [Google Scholar]
  10. Kamekura M.. ( 1998;). Diversity of extremely halophilic bacteria. Extremophiles 2: 289–295 [CrossRef][PubMed].
    [Google Scholar]
  11. Kamekura M., Dyall-Smith M.L., Upasani V., Ventosa A., Kates M.. ( 1997;). Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int J Syst Bacteriol 47: 853–857 [CrossRef][PubMed].
    [Google Scholar]
  12. Kates M.. ( 1993;). Biology of halophilic bacteria. Part II. Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance. Experientia 49: 1027–1036 [CrossRef][PubMed].
    [Google Scholar]
  13. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., other authors. ( 2007;). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948 [CrossRef][PubMed].
    [Google Scholar]
  14. McGenity T.J., Grant W.D.. ( 2001;). Genus VII. Halorubrum. . In Bergey's Manual of Systematic Bacteriology, pp. 320–324. Edited by Boone D. R., Castenholz R. W., Garrity G. M.., 2nd edn.vol. 1 New York: Springer;.
    [Google Scholar]
  15. Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T.. ( 2010;). Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B′ (rpoB′) gene. Int J Syst Evol Microbiol 60: 2398–2408 [CrossRef][PubMed].
    [Google Scholar]
  16. Miyazaki S., Sugawara H., Gojobori T., Tateno Y.. ( 2003;). DNA Data Bank of Japan (DDBJ) in XML. Nucleic Acids Res 31: 13–16 [CrossRef][PubMed].
    [Google Scholar]
  17. Mwatha W.E., Grant W.D.. ( 1993;). Natronobacterium vacuolata sp. nov., a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. Int J Syst Bacteriol 43: 401–404 [CrossRef].
    [Google Scholar]
  18. Nagaoka S., Minegishi H., Echigo A., Usami R.. ( 2010;). Halostagnicola kamekurae sp. nov., an extremely halophilic archaeon from solar salt. Int J Syst Evol Microbiol 60: 2828–2831 [CrossRef][PubMed].
    [Google Scholar]
  19. Nagaoka S., Minegishi H., Echigo A., Shimane Y., Kamekura M., Usami R.. ( 2011;). Halostagnicola alkaliphila sp. nov., an alkaliphilic haloarchaeon from commercial rock salt. Int J Syst Evol Microbiol 61: 1149–1152 [CrossRef][PubMed].
    [Google Scholar]
  20. Ochsenreiter T., Pfeifer F., Schleper C.. ( 2002;). Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies. Extremophiles 6: 267–274 [CrossRef][PubMed].
    [Google Scholar]
  21. Oren A.. ( 2002a;). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28: 56–63 [CrossRef][PubMed].
    [Google Scholar]
  22. Oren A.. ( 2002b;). Molecular ecology of extremely halophilic Archaea Bacteria. FEMS Microbiol Ecol 39: 1–7 [CrossRef][PubMed].
    [Google Scholar]
  23. Oren A., Ventosa A., Grant W.D.. ( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47: 233–238 [CrossRef].
    [Google Scholar]
  24. Page R.D.M.. ( 1996;). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357–358.
    [Google Scholar]
  25. Papke R.T., Koenig J.E., Rodríguez-Valera F., Doolittle W.F.. ( 2004;). Frequent recombination in a saltern population of Halorubrum. Science 306: 1928–1929 [PubMed].
    [Google Scholar]
  26. Pearson W.R., Lipman D.J.. ( 1988;). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85: 2444–2448 [CrossRef][PubMed].
    [Google Scholar]
  27. Pesenti P.T., Sikaroodi M., Gillevet P.M., Sánchez-Porro C., Ventosa A., Litchfield C.D.. ( 2008;). Halorubrum californiense sp. nov., an extreme archaeal halophile isolated from a crystallizer pond at a solar salt plant in California, USA. Int J Syst Evol Microbiol 58: 2710–2715 [CrossRef][PubMed].
    [Google Scholar]
  28. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  29. Shimane Y., Hatada Y., Minegishi H., Echigo A., Nagaoka S., Miyazaki M., Ohta Y., Maruyama T., Usami R., other authors. ( 2011;). Salarchaeum japonicum gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea isolated from commercial salt. Int J Syst Evol Microbiol 61: 2266–2270 [CrossRef][PubMed].
    [Google Scholar]
  30. Smibert R.M., Krieg N.R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  31. Stamatakis A., Ludwig T., Meier H.. ( 2005;). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456–463 [CrossRef][PubMed].
    [Google Scholar]
  32. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  33. Tomlinson G.A., Hochstein L.I.. ( 1976;). Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 22: 587–591 [CrossRef][PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000261
Loading
/content/journal/ijsem/10.1099/ijs.0.000261
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error