1887

Abstract

A yellow-pigmented bacterial strain, 91A-612, isolated from the geocarposphere (soil around the peanut) of very immature peanuts () in Alabama, USA, was studied for its taxonomic position. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence with the sequences of the type strains of the most closely related species showed that the strain belongs to the genus , showing the highest sequence similarities to the type strains of (98.4 %), (98.3 %) and (97.8 %). The 16S rRNA gene sequence similarities to the type strains of all other species of the genus were below 97.0 %. The fatty acid profile of strain 91A-612 consisted of the major fatty acids iso-C, summed feature 3 (iso-C 2-OH/Cω7) and iso-C 3-OH. Major compounds in the polar lipid profile were phosphatidylethanolamine and several unidentified lipids, including two lipids that did not contain a sugar moiety, an amino group or a phosphate group (L3, L8), and an aminolipid (AL1). The quinone system was composed mainly of MK-6. The polyamine pattern contained -homospermidine as the major compound and moderate amounts of spermidine and spermine. DNA–DNA hybridizations between strain 91A-612 and the type strains of , and resulted in relatedness values well below 70 %. These data and the differentiating biochemical and chemotaxonomic properties showed that isolate 91A-612 represents a novel species of the genus , for which we propose the name sp. nov. (type strain 91A-612 = LMG 27814 = CCM 8490 = CIP 110647).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000237
2015-07-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/7/2179.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000237&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.J.. ( 1996;). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47: 39–52 [CrossRef].
    [Google Scholar]
  2. Bajerski F., Ganzert L., Mangelsdorf K., Padur L., Lipski A., Wagner D.. ( 2013;). Chryseobacterium frigidisoli sp. nov., a psychrotolerant species of the family Flavobacteriaceae isolated from sandy permafrost from a glacier forefield. Int J Syst Evol Microbiol 63: 2666–2671 [CrossRef] [PubMed].
    [Google Scholar]
  3. Behrendt U., Ulrich A., Spröer C., Schumann P.. ( 2007;). Chryseobacterium luteum sp. nov., associated with the phyllosphere of grasses. Int J Syst Evol Microbiol 57: 1881–1885 [CrossRef] [PubMed].
    [Google Scholar]
  4. Behrendt U., Ulrich A., Schumann P.. ( 2008;). Chryseobacterium gregarium sp. nov., isolated from decaying plant material. Int J Syst Evol Microbiol 58: 1069–1074 [CrossRef] [PubMed].
    [Google Scholar]
  5. Brosius J., Palmer M.L., Kennedy P.J., Noller H.F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75: 4801–4805 [CrossRef] [PubMed].
    [Google Scholar]
  6. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11: 1–8 [CrossRef].
    [Google Scholar]
  7. Busse H.J., Bunka S., Hensel A., Lubitz W.. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47: 698–708 [CrossRef].
    [Google Scholar]
  8. Charimba G., Jooste P., Albertyn J., Hugo C.. ( 2013;). Chryseobacterium carnipullorum sp. nov., isolated from raw chicken. Int J Syst Evol Microbiol 63: 3243–3249 [CrossRef] [PubMed].
    [Google Scholar]
  9. Chen X.Y., Zhao R., Chen Z.L., Liu L., Li X.D., Li Y.H.. ( 2015;). Chryseobacterium polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Chryseobacterium. Antonie van Leeuwenhoek 107: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  10. Cho S.H., Lee K.S., Shin D.S., Han J.H., Park K.S., Lee C.H., Park K.H., Kim S.B.. ( 2010;). Four new species of Chryseobacterium from the rhizosphere of coastal sand dune plants, Chryseobacterium elymi sp. nov., Chryseobacterium hagamense sp. nov., Chryseobacterium lathyri sp. nov. and Chryseobacterium rhizosphaerae sp. nov. Syst Appl Microbiol 33: 122–127 [CrossRef] [PubMed].
    [Google Scholar]
  11. de Beer H., Hugo C.J., Jooste P.J., Willems A., Vancanneyt M., Coenye T., Vandamme P.A.R.. ( 2005;). Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int J Syst Evol Microbiol 55: 2149–2153 [CrossRef] [PubMed].
    [Google Scholar]
  12. Felsenstein J.. ( 1985;). Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  13. Felsenstein J.. ( 2005;). phylip (Phylogeny Inference Package), version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA. ..
  14. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R..), ( 1994;). Methods for General and Molecular Bacteriology. ., Washington, DC: American Society for Microbiology;.
  15. Hantsis-Zacharov E., Shakéd T., Senderovich Y., Halpern M.. ( 2008;). Chryseobacterium oranimense sp. nov., a psychrotolerant, proteolytic and lipolytic bacterium isolated from raw cow's milk. Int J Syst Evol Microbiol 58: 2635–2639 [CrossRef] [PubMed].
    [Google Scholar]
  16. Herzog P., Winkler I., Wolking D., Kämpfer P., Lipski A.. ( 2008;). Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int J Syst Evol Microbiol 58: 26–33 [CrossRef] [PubMed].
    [Google Scholar]
  17. Hoang V.A., Kim Y.J., Nguyen N.L., Yang D.C.. ( 2013;). Chryseobacterium yeoncheonense sp. nov., with ginsenoside converting activity isolated from soil of a ginseng field. Arch Microbiol 195: 463–471 [CrossRef] [PubMed].
    [Google Scholar]
  18. Holmes B., Steigerwalt A.G., Nicholson A.C.. ( 2013;). DNA–DNA hybridization study of strains of Chryseobacterium Elizabethkingia Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov., Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov. and Chryseobacterium taklimakanense comb. nov. Int J Syst Evol Microbiol 63: 4639–4662 [CrossRef] [PubMed].
    [Google Scholar]
  19. Hugo C.J., Segers P., Hoste B., Vancanneyt M., Kersters K.. ( 2003;). Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53: 771–777 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kämpfer P.. ( 1990;). Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae. Zentralbl Bakteriol 273: 164–172 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kämpfer P., Kroppenstedt R.M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42: 989–1005 [CrossRef].
    [Google Scholar]
  22. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21: 227–251 [CrossRef] [PubMed].
    [Google Scholar]
  23. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J.. ( 2003;). Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53: 93–97 [CrossRef] [PubMed].
    [Google Scholar]
  24. Kämpfer P., Vaneechoutte M., Lodders N., De Baere T., Avesani V., Janssens M., Busse H.-J., Wauters G.. ( 2009;). Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int J Syst Evol Microbiol 59: 2421–2428 [CrossRef] [PubMed].
    [Google Scholar]
  25. Kämpfer P., Arun A.B., Young C.C., Chen W.M., Sridhar K.R., Rekha P.D.. ( 2010a;). Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. Int J Syst Evol Microbiol 60: 1765–1769 [CrossRef] [PubMed].
    [Google Scholar]
  26. Kämpfer P., Chandel K., Prasad G.B., Shouche Y.S., Veer V.. ( 2010b;). Chryseobacterium culicis sp. nov., isolated from the midgut of the mosquito Culex quinquefasciatus. Int J Syst Evol Microbiol 60: 2387–2391 [CrossRef] [PubMed].
    [Google Scholar]
  27. Kämpfer P., Fallschissel K., Avendaño-Herrera R.. ( 2011;). Chryseobacterium chaponense sp. nov., isolated from farmed Atlantic salmon (Salmo salar). Int J Syst Evol Microbiol 61: 497–501 [CrossRef] [PubMed].
    [Google Scholar]
  28. Kämpfer P., McInroy J.A., Glaeser S.P.. ( 2014a;). Chryseobacterium zeae sp. nov., Chryseobacterium arachidis sp. nov., and Chryseobacterium geocarposphaerae sp. nov. isolated from the rhizosphere environment. Antonie van Leeuwenhoek 105: 491–500 [CrossRef] [PubMed].
    [Google Scholar]
  29. Kämpfer P., Poppel M.T., Wilharm G., Busse H.-J., McInroy J.A., Glaeser S.P.. ( 2014b;). Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample. Int J Syst Evol Microbiol 64: 1419–1427 [CrossRef] [PubMed].
    [Google Scholar]
  30. Kämpfer P., McInroy J.A., Glaeser S.P.. ( 2015;). Chryseobacterium rhizoplanae sp. nov., isolated from the rhizoplane environment. Antonie van Leeuwenhoek 107: 533–538 [CrossRef] [PubMed].
    [Google Scholar]
  31. Kim K.K., Bae H.-S., Schumann P., Lee S.-T.. ( 2005;). Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55: 133–138 [CrossRef] [PubMed].
    [Google Scholar]
  32. Kim K.K., Lee K.C., Oh H.M., Lee J.S.. ( 2008;). Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. Int J Syst Evol Microbiol 58: 533–537 [CrossRef] [PubMed].
    [Google Scholar]
  33. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  34. Kirk K.E., Hoffman J.A., Smith K.A., Strahan B.L., Failor K.C., Krebs J.E., Gale A.N., Do T.D., Sontag T.C., other authors. ( 2013;). Chryseobacterium angstadtii sp. nov., isolated from a newt tank. Int J Syst Evol Microbiol 63: 4777–4783 [CrossRef] [PubMed].
    [Google Scholar]
  35. Kook M., Son H.M., Ngo H.T., Yi T.H.. ( 2014;). Chryseobacterium camelliae sp. nov., isolated from green tea. Int J Syst Evol Microbiol 64: 851–857 [CrossRef] [PubMed].
    [Google Scholar]
  36. Lane D.J.. ( 1991;). 16S/23S rRNA sequencing. . In In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  37. Li Y., Kawamura Y., Fujiwara N., Naka T., Liu H., Huang X., Kobayashi K., Ezaki T.. ( 2003;). Chryseobacterium miricola sp. nov., a novel species isolated from condensation water of space station Mir. Syst Appl Microbiol 26: 523–528 [CrossRef] [PubMed].
    [Google Scholar]
  38. Loch T.P., Faisal M.. ( 2014;). Chryseobacterium aahli sp. nov., isolated from lake trout (Salvelinus namaycush) and brown trout (Salmo trutta), and emended descriptions of Chryseobacterium ginsenosidimutans Chryseobacterium gregarium. Int J Syst Evol Microbiol 64: 1573–1579 [CrossRef] [PubMed].
    [Google Scholar]
  39. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Q., Buchner A., Lai T., Steppi S., other authors. ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371 [CrossRef] [PubMed].
    [Google Scholar]
  40. Montero-Calasanz M.C., Göker M., Rohde M., Spröer C., Schumann P., Busse H.J., Schmid M., Tindall B.J., Klenk H.P., Camacho M.. ( 2013;). Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii Chryseobacterium indologenes Chryseobacterium wanjuense Chryseobacterium gregarium. Int J Syst Evol Microbiol 63: 4386–4395 [CrossRef] [PubMed].
    [Google Scholar]
  41. Montero-Calasanz M.C., Göker M., Rohde M., Spröer C., Schumann P., Busse H.-J., Schmid M., Klenk H.-P., Tindall B.-J., Camacho M.. ( 2014;). Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium C. daecheongense C. gambrini C. gleum C. joostei C. jejuense C. luteum C. shigense C. taiwanense C. ureilyticum C. vrystaatense. Syst Appl Microbiol 37: 342–350 [CrossRef] [PubMed].
    [Google Scholar]
  42. Nguyen N.-L., Kim Y.-J., Hoang V.A., Yang D.-C.. ( 2013;). Chryseobacterium ginsengisoli sp. nov., isolated from the rhizosphere of ginseng and emended description of Chryseobacterium gleum. Int J Syst Evol Microbiol 63: 2975–2980 [CrossRef] [PubMed].
    [Google Scholar]
  43. Park M.S., Jung S.R., Lee K.H., Lee M.-S., Do J.O., Kim S.B., Bae K.S.. ( 2006;). Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56: 433–438 [CrossRef] [PubMed].
    [Google Scholar]
  44. Park Y.J., Son H.M., Lee E.H., Kim J.H., Mavlonov G.T., Choi K.J., Shin H.S., Kook M., Yi T.H.. ( 2013;). Chryseobacterium gwangjuense sp. nov., isolated from soil. Int J Syst Evol Microbiol 63: 4580–4585 [CrossRef] [PubMed].
    [Google Scholar]
  45. Pruesse E., Peplies J., Glöckner F.O.. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823–1829 [CrossRef] [PubMed].
    [Google Scholar]
  46. Reichenbach H.. ( 1989;). The order Cytophagales Leadbetter 1974, 99AL. . In Bergey's Manual of Systematic Bacteriology, pp. 2011–2073. Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. C..3 Baltimore: Williams & Wilkins;.
    [Google Scholar]
  47. Sang M.K., Kim H.S., Myung I.S., Ryu C.M., Kim B.S., Kim K.D.. ( 2013;). Chryseobacterium kwangjuense sp. nov., isolated from pepper (Capsicum annuum L.) root. Int J Syst Evol Microbiol 63: 2835–2840 [CrossRef] [PubMed].
    [Google Scholar]
  48. Shen F.T., Kämpfer P., Young C.C., Lai W.A., Arun A.B.. ( 2005;). Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 55: 1301–1304 [CrossRef] [PubMed].
    [Google Scholar]
  49. Shimomura K., Kaji S., Hiraishi A.. ( 2005;). Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 55: 1903–1906 [CrossRef] [PubMed].
    [Google Scholar]
  50. Smibert R.M., Krieg N.R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  51. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690 [CrossRef] [PubMed].
    [Google Scholar]
  52. Stolz A., Busse H.-J., Kämpfer P.. ( 2007;). Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57: 572–576 [CrossRef] [PubMed].
    [Google Scholar]
  53. Szoboszlay S., Atzél B., Kukolya J., Tóth E.M., Márialigeti K., Schumann P., Kriszt B.. ( 2008;). Chryseobacterium hungaricum sp. nov., isolated from hydrocarbon-contaminated soil. Int J Syst Evol Microbiol 58: 2748–2754 [CrossRef] [PubMed].
    [Google Scholar]
  54. Tai C.-J., Kuo H.-P., Lee F.-L., Chen H.-K., Yokota A., Lo C.-C.. ( 2006;). Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 56: 1771–1776 [CrossRef] [PubMed].
    [Google Scholar]
  55. Tindall B.J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  56. Tindall B.J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  57. Vandamme P., Bernardet J.-F., Segers P., Kersters K., Holmes B.. ( 1994;). New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44: 827–831 [CrossRef].
    [Google Scholar]
  58. Vaneechoutte M., Kämpfer P., DeBaere T., Avesani V., Janssens M., Wauters G.. ( 2007;). Chryseobacterium hominis sp. nov., to accommodate clinical isolates biochemically similar to CDC groups II-h and II-c. Int J Syst Evol Microbiol 57: 2623–2628 [CrossRef] [PubMed].
    [Google Scholar]
  59. Venil C.K., Nordin N., Zakaria Z.A., Ahmad W.A.. ( 2014;). Chryseobacterium artocarpi sp. nov., isolated from the rhizosphere soil of Artocarpus integer. Int J Syst Evol Microbiol 64: 3153–3159 [CrossRef] [PubMed].
    [Google Scholar]
  60. Weon H.Y., Kim B.Y., Yoo S.H., Kwon S.W., Stackebrandt E., Go S.J.. ( 2008;). Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. Int J Syst Evol Microbiol 58: 470–473 [CrossRef] [PubMed].
    [Google Scholar]
  61. Wu Y.F., Wu Q.L., Liu S.J.. ( 2013;). Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium Chryseobacterium taiwanense Chryseobacterium jejuense Chryseobacterium indoltheticum. Int J Syst Evol Microbiol 63: 913–919 [CrossRef] [PubMed].
    [Google Scholar]
  62. Yarza P., Richter M., Peplies J., Euzéby J., Amann R., Schleifer K.H., Ludwig W., Glöckner F.O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31: 241–250 [CrossRef] [PubMed].
    [Google Scholar]
  63. Young C.C., Kämpfer P., Shen F.T., Lai W.A., Arun A.B.. ( 2005;). Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55: 423–426 [CrossRef] [PubMed].
    [Google Scholar]
  64. Zhao R., Chen X.Y., Li X.D., Chen Z.L., Li Y.H.. ( 2015;). Chryseobacterium takakiae sp. nov., a member of the phylum Bacteroidetes isolated from Takakia lepidozioides. Int J Syst Evol Microbiol 65: 71–76 [CrossRef] [PubMed].
    [Google Scholar]
  65. Ziemke F., Höfle M.G., Lalucat J., Rosselló-Mora R.. ( 1998;). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48: 179–186 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000237
Loading
/content/journal/ijsem/10.1099/ijs.0.000237
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error