1887

Abstract

A strain designated PYM3-14 was isolated from the drinking water network of Budapest (Hungary) and was studied by polyphasic taxonomic methods. The straight-rod-shaped cells stained Gram-negative, were aerobic and non-motile. Phylogenetic analysis of the 16S rRNA gene sequence of strain PYM3-14 revealed a clear affiliation with members of the family within the class . The 16S rRNA gene sequence of strain PYM3-14 showed the closest sequence similarities to CH15-1 (96.2 %), YC6267 (95.2 %) and UASM D (94.4 %). The DNA G+C content of strain PYM3-14, measured by two different methods (52.0 mol% and 55.9 mol%, respectively), was much lower than that of any member of the genus . The predominant fatty acids (>8 %) were iso-C, iso-C, iso-C, iso-Cω9 and Cω7 alcohol. Strain PYM3-14 contained Q-8 as the major ubiquinone and phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylmonomethylethanolamine as the major polar lipids. According to phenotypic and genotypic data strain PYM3-14 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PYM3-14 ( = NCAIM B 02508 = DSM 25526). On the basis of new data obtained in this study, an emended description of the genus is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000201
2015-06-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/6/1915.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000201&mimeType=html&fmt=ahah

References

  1. Altschul S.F. , Madden T.L. , Schäffer A.A. , Zhang J. , Zhang Z. , Miller W. , Lipman D.J. . ( 1997;). Gapped blast psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.[CrossRef]
    [Google Scholar]
  2. Aslam Z. , Park J.H. , Kim S.W. , Jeon C.O. , Chung Y.R. . ( 2009;). Arenimonas oryziterrae sp. nov., isolated from a field of rice (Oryza sativa L.) managed under a no-tillage regime, and reclassification of Aspromonas composti as Arenimonas composti comb. nov.. Int J Syst Evol Microbiol 59: 2967–2972.[CrossRef]
    [Google Scholar]
  3. Barrow G.I. , Feltham R.K.A. . ( 2003;). Cowan and Steel's Manual for the Identification of Medical Bacteria., Cambridge: Cambridge University Press;.
    [Google Scholar]
  4. Cashion P. , Holder-Franklin M.A. , McCully J. , Franklin M. . ( 1977;). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81: 461–466.[CrossRef]
    [Google Scholar]
  5. Chen F. , Shi Z. , Wang G. . ( 2012;). Arenimonas metalli sp. nov., isolated from an iron mine. Int J Syst Evol Microbiol 62: 1744–1749.[CrossRef]
    [Google Scholar]
  6. Christensen P. , Cook F.D. . ( 1978;). Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28: 367–393.[CrossRef]
    [Google Scholar]
  7. Collins M.D. , Pirouz T. , Goodfellow M. , Minnikin D.E. . ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100: 221–230.[CrossRef]
    [Google Scholar]
  8. Embley T.M. , Wait R. . ( 1994;). Structural lipids of Eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 141–147. Edited by Goodfellow M. , O'Donnell A. G. . New York: Wiley;.
    [Google Scholar]
  9. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376.[CrossRef]
    [Google Scholar]
  10. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.[CrossRef]
    [Google Scholar]
  11. Groth I. , Schumann P. , Rainey F.A. , Martin K. , Schuetze B. , Augsten K. . ( 1997;). Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47: 1129–1133.[CrossRef]
    [Google Scholar]
  12. Hall T.A. . ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  13. Hasegawa T. , Takizawa M. , Tanida S. . ( 1983;). A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29: 319–322.[CrossRef]
    [Google Scholar]
  14. Homonnay Z.G. , Makk J. , Brumbauer A. , Párkány-Simon B. , Márialigeti K.M. , Tóth E. . ( 2008;). Investigations on the bacterial community of two characteristic sites of drinking water network of Budapest. Hid Közl 88: 79–81 (in Hungarian).
    [Google Scholar]
  15. Homonnay Z.G. , Török G. , Makk J. , Brumbauer A. , Major E. , Márialigeti K. , Tóth E. . ( 2014;). Bacterial communities in the collection and chlorinated distribution sections of a drinking water system in Budapest, Hungary. J Basic Microbiol 54: 729–738.[CrossRef]
    [Google Scholar]
  16. Hugh R. , Leifson E. . ( 1953;). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66: 24–26.
    [Google Scholar]
  17. Huy H. , Jin L. , Lee Y.-K. , Lee K.C. , Lee J.-S. , Yoon J.-H. , Ahn C.-Y. , Oh H.-M. . ( 2013;). Arenimonas daechungensis sp. nov., isolated from the sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 63: 484–489.[CrossRef]
    [Google Scholar]
  18. Jin L. , Kim K.K. , Im W.-T. , Yang H.-C. , Lee S.-T. . ( 2007;). Aspromonas composti gen. nov., sp. nov., a novel member of the family Xanthomonadaceae . Int J Syst Evol Microbiol 57: 1876–1880.[CrossRef]
    [Google Scholar]
  19. Jin L. , Kim K.K. , An K.G. , Oh H.M. , Lee S.T. . ( 2012;). Arenimonas daejeonensis sp. nov., isolated from compost. Int J Syst Evol Microbiol 62: 1674–1678.[CrossRef]
    [Google Scholar]
  20. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721.[CrossRef]
    [Google Scholar]
  21. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120.[CrossRef]
    [Google Scholar]
  22. Kwon S.-W. , Kim B.-Y. , Weon H.-Y. , Baek Y.K. , Go S.-J. . ( 2007;). Arenimonas donghaensis gen. nov., sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol 57: 954–958.[CrossRef]
    [Google Scholar]
  23. Makk J. , Homonnay Z.G. , Kéki Z. , Lejtovicz Z. , Márialigeti K. , Spröer C. , Schumann P. , Tóth E.M. . ( 2011;). Tahibacter aquaticus gen. nov., sp. nov., a new gammaproteobacterium isolated from the drinking water supply system of Budapest (Hungary). Syst Appl Microbiol 34: 110–115.[CrossRef]
    [Google Scholar]
  24. Marmur J. . ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3: 208–218.[CrossRef]
    [Google Scholar]
  25. Mesbah M. , Premachandran U. , Whitman W.B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167.[CrossRef]
    [Google Scholar]
  26. Minnikin D.E. , Collins M.D. , Goodfellow M. . ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas Oerskovia and related taxa. J Appl Bacteriol 47: 87–95.[CrossRef]
    [Google Scholar]
  27. Poindexter J.S. . ( 1991;). Dimorphic prosthecate bacteria: the genera Caulobacter Asticcacaulis Hyphomicrobium Pedomicrobium Hyphomonas Thiodendron . . In The Prokaryotes , 2nd edn., pp. 2176–2196. Edited by Balows A. , Trüper H. G. , Dworkin M. , Harder W. , Schleifer K. H. . New York: Springer;.
    [Google Scholar]
  28. Quast C. , Pruesse E. , Yilmaz P. , Gerken J. , Schweer T. , Yarza P. , Peplies J. , Glöckner F.O. . ( 2013;). The silva ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41: (D1), D590–D596.[CrossRef]
    [Google Scholar]
  29. Rzhetsky A. , Nei M. . ( 1992;). A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9: 945–967.
    [Google Scholar]
  30. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
    [Google Scholar]
  31. Schildkraut C. , Lifson S. . ( 1965;). Dependence of the melting temperature of DNA on salt concentration. Biopolymers 3: 195–208.[CrossRef]
    [Google Scholar]
  32. Schumann P. , Pukall R. . ( 2013;). The discriminatory power of ribotyping as automatable technique for differentiation of bacteria. Syst Appl Microbiol 36: 369–375.[CrossRef]
    [Google Scholar]
  33. Stead D.E. , Sellwood J.E. , Wilson J. , Viney I. . ( 1992;). Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 72: 315–321.[CrossRef]
    [Google Scholar]
  34. Tamaoka J. , Komagata K. . ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128.[CrossRef]
    [Google Scholar]
  35. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729.[CrossRef]
    [Google Scholar]
  36. Tóth E.M. , Schumann P. , Borsodi A.K. , Kéki Z. , Kovács A.L. , Márialigeti K. . ( 2008;). Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 58: 976–981.[CrossRef]
    [Google Scholar]
  37. Tóth E.M. , Kéki Z. , Makk J. , Homonnay Z.G. , Márialigeti K. , Schumann P. . ( 2011;). Nocardioides hungaricus sp. nov., isolated from a drinking water supply system. Int J Syst Evol Microbiol 61: 549–553.[CrossRef]
    [Google Scholar]
  38. Tóth E.M. , Vengring A. , Homonnay Z.G. , Kéki Z. , Spröer C. , Borsodi A.K. , Márialigeti K. , Schumann P. . ( 2014;). Phreatobacter oligotrophus gen. nov., sp. nov., an alphaproteobacterium isolated from ultrapure water of the water purification system of a power plant. Int J Syst Evol Microbiol 64: 839–845.[CrossRef]
    [Google Scholar]
  39. Yamada K. , Komagata K. . ( 1972;). Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical, and physiological characteristics. J Gen Appl Microbiol 18: 399–416.[CrossRef]
    [Google Scholar]
  40. Young C.-C. , Kämpfer P. , Ho M.-J. , Busse H.-J. , Huber B.E. , Arun A.B. , Shen F.-T. , Lai W.-A. , Rekha P.D. . ( 2007;). Arenimonas malthae sp. nov., a gammaproteobacterium isolated from an oil-contaminated site. Int J Syst Evol Microbiol 57: 2790–2793.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000201
Loading
/content/journal/ijsem/10.1099/ijs.0.000201
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error