1887

Abstract

An extremely halophilic archaeon belonging to the genus , strain C49, was isolated from sediment of the hypersaline lake Aran-Bidgol in Iran. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain C49 was closely related to JCM 8865 (99.5 %) and other species of the genus . Studies based on multilocus sequence analysis revealed that strain C49 is placed among the species of ; the strain constituted a defined branch in comparison with the type strains of species of , while the 16S rRNA gene sequence divergence could not define the status of the newly isolated strain. For optimum growth, strain C49 required 20 % (w/v) salts at pH 7.0 and 37 °C under aerobic conditions. Mg was not required. The cells were pleomorphic rods, motile and stained Gram-variable. Colonies of the strain were pink. Hypotonic treatment with <12 % NaCl provoked cell lysis. The polar lipid pattern of strain C49 consisted of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester derived from both CC and CC archaeol, phosphatidylglycerol sulfate and sulfated mannosyl glucosyl diether. The DNA G+C content was 64.2 mol%. DNA–DNA hybridization studies and average nucleotide identity confirmed that strain C49 constitutes a distinct genospecies. Data obtained in this study show that strain C49 represents a novel species, for which the name sp. nov. is proposed. The type strain is C49 ( = IBRC-M 10232 = JCM 30541).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000175
2015-06-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/6/1770.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000175&mimeType=html&fmt=ahah

References

  1. Akaike H.. ( 1974; ). A new look at the statistical model identification. . IEEE Trans Automat Contr 19:, 716–723. [CrossRef]
    [Google Scholar]
  2. Allers T., Ngo H. P., Mevarech M., Lloyd R. G.. ( 2004; ). Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes. . Appl Environ Microbiol 70:, 943–953. [CrossRef] [PubMed]
    [Google Scholar]
  3. Amoozegar M. A., Makhdoumi-Kakhki A., Shahzadeh Fazeli S. A., Azarbaijani R., Ventosa A.. ( 2012; ). Halopenitus persicus gen. nov., sp. nov., an archaeon from an inland salt lake. . Int J Syst Evol Microbiol 62:, 1932–1936. [CrossRef] [PubMed]
    [Google Scholar]
  4. Amoozegar M. A., Makhdoumi-Kakhki A., Mehrshad M., Fazeli S. A., Ventosa A.. ( 2013; ). Halopenitus malekzadehii sp. nov., an extremely halophilic archaeon isolated from a salt lake. . Int J Syst Evol Microbiol 63:, 3232–3236. [CrossRef] [PubMed]
    [Google Scholar]
  5. Amoozegar M. A., Makhdoumi-Kakhki A., Mehrshad M., Fazeli S. A., Spröer C., Ventosa A.. ( 2014; a). Halorientalis persicus sp. nov., an extremely halophilic archaeon isolated from a salt lake and emended description of the genus Halorientalis. . Int J Syst Evol Microbiol 64:, 940–944. [CrossRef] [PubMed]
    [Google Scholar]
  6. Amoozegar M. A., Makhdoumi-Kakhki A., Mehrshad M., Riazi S., Ventosa A.. ( 2014; b). Halovivax limisalsi sp. nov., an extremely halophilic archaeon from hypersaline mud. . Int J Syst Evol Microbiol 64:, 3422–3426. [CrossRef] [PubMed]
    [Google Scholar]
  7. Amoozegar M. A., Makhdoumi-Kakhki A., Mehrshad M., Rasooli M., Fazeli S. A., Spröer C., Ventosa A.. ( 2015; ). Halovivax cerinus sp. nov., an extremely halophilic archaeon from a hypersaline lake. . Int J Syst Evol Microbiol 65:, 65–70. [CrossRef] [PubMed]
    [Google Scholar]
  8. Angelini R., Corral P., Lopalco P., Ventosa A., Corcelli A.. ( 2012; ). Novel ether lipid cardiolipins in archaeal membranes of extreme haloalkaliphiles. . Biochim Biophys Acta 1818:, 1365–1373. [CrossRef] [PubMed]
    [Google Scholar]
  9. Arahal D. R., Dewhirst F. E., Paster B. J., Volcani B. E., Ventosa A.. ( 1996; ). Phylogenetic analyses of some extremely halophilic archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences. . Appl Environ Microbiol 62:, 3779–3786.[PubMed]
    [Google Scholar]
  10. Barrow G. I., Feltham R. K. A.. ( 2003; ). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  11. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M.. ( 1966; ). Antibiotic susceptibility testing by a standardized single disk method. . Am J Clin Pathol 45:, 493–496.[PubMed]
    [Google Scholar]
  12. Boucher Y., Douady C. J., Sharma A. K., Kamekura M., Doolittle W. F.. ( 2004; ). Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. . J Bacteriol 186:, 3980–3990. [CrossRef] [PubMed]
    [Google Scholar]
  13. Corcelli A., Lobasso S.. ( 2006; ). Characterization of lipids of halophilic archaea. . Methods Microbiol 35:, 585–613. [CrossRef]
    [Google Scholar]
  14. Corral P., Gutiérrez M. C., Castillo A. M., Domínguez M., Lopalco P., Corcelli A., Ventosa A.. ( 2013; ). Natronococcus roseus sp. nov., a haloalkaliphilic archaeon from a hypersaline lake. . Int J Syst Evol Microbiol 63:, 104–108. [CrossRef] [PubMed]
    [Google Scholar]
  15. Cui H. L., Tohty D., Zhou P. J., Liu S. J.. ( 2006; ). Halorubrum lipolyticum sp. nov. and Halorubrum aidingense sp. nov., isolated from two salt lakes in Xin-Jiang, China. . Int J Syst Evol Microbiol 56:, 1631–1634. [CrossRef] [PubMed]
    [Google Scholar]
  16. Darriba D., Taboada G. L., Doallo R., Posada D.. ( 2012; ). jModelTest 2: more models, new heuristics and parallel computing. . Nat Methods 9:, 772. [CrossRef] [PubMed]
    [Google Scholar]
  17. DeLong E. F.. ( 1992; ). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89:, 5685–5689. [CrossRef] [PubMed]
    [Google Scholar]
  18. Dussault H. P.. ( 1955; ). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  19. Dyall-Smith, M. (2009). The Halohandbook, version 7.2, p. 118. http://www.haloarchaea.com/resources/halohandbook/
  20. Edgar R. C.. ( 2004; ). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef] [PubMed]
    [Google Scholar]
  21. Felsenstein J.. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  22. Fuchs B., Schiller J., Süß R., Schürenberg M., Suckau D.. ( 2007; ). A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from egg yolk. . Anal Bioanal Chem 389:, 827–834. [CrossRef] [PubMed]
    [Google Scholar]
  23. Fullmer M. S., Soucy S. M., Swithers K. S., Makkay A. M., Wheeler R., Ventosa A., Gogarten J. P., Papke R. T.. ( 2014; ). Population and genomic analysis of the genus Halorubrum. . Front Microbiol 5:, 140. [CrossRef] [PubMed]
    [Google Scholar]
  24. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  25. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007; ). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57:, 81–91. [CrossRef] [PubMed]
    [Google Scholar]
  26. Gouy M., Guindon S., Gascuel O.. ( 2010; ). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. . Mol Biol Evol 27:, 221–224. [CrossRef] [PubMed]
    [Google Scholar]
  27. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. ( 2010; ). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59:, 307–321. [CrossRef] [PubMed]
    [Google Scholar]
  28. Gutiérrez M. C., Castillo A. M., Pagaling E., Heaphy S., Kamekura M., Xue Y., Ma Y., Cowan D. A., Jones B. E. et al. ( 2008; ). Halorubrum kocurii sp. nov., an archaeon isolated from a saline lake. . Int J Syst Evol Microbiol 58:, 2031–2035. [CrossRef] [PubMed]
    [Google Scholar]
  29. Johnson J. L.. ( 1994; ). Similarity analysis of DNAs. . In Methods for General and Molecular Bacteriology, pp. 655–682. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  30. Kates M.. ( 1986; ). In Techniques of Lipidology: Isolation, Analysis and Identification of Lipids, pp. 100–110. Edited by Burdon R. H., van Knippenberg P. H... Amsterdam:: Elsevier;.
    [Google Scholar]
  31. Kean E. L.. ( 1968; ). Rapid, sensitive spectrophotometric method for quantitative determination of sulfatides. . J Lipid Res 9:, 319–327.[PubMed]
    [Google Scholar]
  32. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  33. Konstantinidis K. T., Tiedje J. M.. ( 2005; ). Genomic insights that advance the species definition for prokaryotes. . Proc Natl Acad Sci U S A 102:, 2567–2572. [CrossRef] [PubMed]
    [Google Scholar]
  34. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  35. Maddison, W. P. & Maddison, D. R. (2011). Mesquite: a modular system for evolutionary analysis, version 2.75. http://mesquiteproject.org
  36. Makhdoumi-Kakhki A., Amoozegar M. A., Kazemi B., Pašić L., Ventosa A.. ( 2012; a). Prokaryotic diversity in Aran-Bidgol salt lake, the largest hypersaline playa in Iran. . Microbes Environ 27:, 87–93. [CrossRef] [PubMed]
    [Google Scholar]
  37. Makhdoumi-Kakhki A., Amoozegar M. A., Bagheri M., Ramezani M., Ventosa A.. ( 2012; b). Haloarchaeobius iranensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from a saline lake. . Int J Syst Evol Microbiol 62:, 1021–1026. [CrossRef] [PubMed]
    [Google Scholar]
  38. Makhdoumi-Kakhki A., Amoozegar M. A., Ventosa A.. ( 2012; c). Halovenus aranensis gen. nov., sp. nov., an extremely halophilic archaeon from Aran-Bidgol salt lake. . Int J Syst Evol Microbiol 62:, 1331–1336. [CrossRef] [PubMed]
    [Google Scholar]
  39. Mancinelli R. L., Landheim R., Sánchez-Porro C., Dornmayr-Pfaffenhuemer M., Gruber C., Legat A., Ventosa A., Radax C., Ihara K. et al. ( 2009; ). Halorubrum chaoviator sp. nov., a haloarchaeon isolated from sea salt in Baja California, Mexico, Western Australia and Naxos, Greece. . Int J Syst Evol Microbiol 59:, 1908–1913. [CrossRef] [PubMed]
    [Google Scholar]
  40. Marmur J.. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  41. Marmur J., Doty P.. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  42. McGenity T. J., Grant W. D.. ( 1995; ). Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov.. Syst Appl Microbiol 18:, 237–243. [CrossRef]
    [Google Scholar]
  43. McGenity T. J., Grant W. D.. ( 2001; ). Genus VII. Halorubrum. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 1, pp. 320–324. Edited by Boone D. R., Castenholz R. W., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  44. Nelson-Sathi S., Dagan T., Landan G., Janssen A., Steel M., McInerney J. O., Deppenmeier U., Martin W. F.. ( 2012; ). Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. . Proc Natl Acad Sci U S A 109:, 20537–20542. [CrossRef] [PubMed]
    [Google Scholar]
  45. Oren A., Ventosa A., Grant W. D.. ( 1997; ). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  46. Oren A., Arahal D. R., Ventosa A.. ( 2009; ). Emended descriptions of genera of the family Halobacteriaceae. . Int J Syst Evol Microbiol 59:, 637–642. [CrossRef] [PubMed]
    [Google Scholar]
  47. Owen R. J., Pitcher D.. ( 1985; ). Current methods for estimating DNA base composition and levels of DNA–DNA hybridization. . In Chemical Methods in Bacterial Systematics, pp. 67–93. Edited by Goodfellow M., Minnikin D. E... London:: Academic Press;.
    [Google Scholar]
  48. Papke R. T., Koenig J. E., Rodríguez-Valera F., Doolittle W. F.. ( 2004; ). Frequent recombination in a saltern population of Halorubrum. . Science 306:, 1928–1929.[PubMed]
    [Google Scholar]
  49. Papke R. T., White E., Reddy P., Weigel G., Kamekura M., Minegishi H., Usami R., Ventosa A.. ( 2011; ). A multilocus sequence analysis approach to the phylogeny and taxonomy of the Halobacteriales. . Int J Syst Evol Microbiol 61:, 2984–2995. [CrossRef] [PubMed]
    [Google Scholar]
  50. Parte, A. C. (2014). List of Prokaryotic Names with Standing in Nomenclature. http://www.bacterio.net
  51. Pesenti P. T., Sikaroodi M., Gillevet P. M., Sánchez-Porro C., Ventosa A., Litchfield C. D.. ( 2008; ). Halorubrum californiense sp. nov., an extreme archaeal halophile isolated from a crystallizer pond at a solar salt plant in California, USA. . Int J Syst Evol Microbiol 58:, 2710–2715. [CrossRef] [PubMed]
    [Google Scholar]
  52. Ram Mohan N., Fullmer M. S., Makkay A. M., Wheeler R., Ventosa A., Naor A., Gogarten J. P., Papke R. T.. ( 2014; ). Evidence from phylogenetic and genome fingerprinting analyses suggests rapidly changing variation in Halorubrum and Haloarcula populations. . Front Microbiol 5:, 143. [CrossRef] [PubMed]
    [Google Scholar]
  53. Richter M., Rosselló-Móra R.. ( 2009; ). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef] [PubMed]
    [Google Scholar]
  54. Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1980; ). Isolation of extremely halophilic bacteria able to grow in defined inorganic media with single carbon sources. . J Gen Microbiol 119:, 535–538.
    [Google Scholar]
  55. Saitou N., Nei M.. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  56. Sambrook J., Russell D. W.. (editors) ( 2001; ). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  57. Scorpio R.. ( 2000; ). Fundamentals of Acids, Bases, Buffers and Their Application to Biochemical Systems . Dubuque, IA:: Kendall/Hunt;.
    [Google Scholar]
  58. Smibert R. M., Krieg N. R.. ( 1981; ). General characterization. . In Manual of Methods for General Bacteriology, pp. 409–443. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  59. Stackebrandt E., Goebel B. M.. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  60. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. et al. ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef] [PubMed]
    [Google Scholar]
  61. Stamatakis A., Ludwig T., Meier H.. ( 2005; ). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. . Bioinformatics 21:, 456–463. [CrossRef] [PubMed]
    [Google Scholar]
  62. Subow N. N.. ( 1931; ). Oceanographical Tables. Moscow:: Commissariat of Agriculture of USSR, Hydro-Meteorological Committee of USSR and Oceanographical Institute of USSR;.
    [Google Scholar]
  63. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  64. Ventosa A., Quesada E., Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1982; ). Numerical taxonomy of moderately halophilic Gram-negative rods. . J Gen Microbiol 128:, 1959–1968.
    [Google Scholar]
  65. Ventosa A., Gutiérrez M. C., Kamekura M., Dyall-Smith M. L.. ( 1999; ). Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov.. Int J Syst Bacteriol 49:, 131–136. [CrossRef] [PubMed]
    [Google Scholar]
  66. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987; ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  67. Williams D., Gogarten J. P., Papke R. T.. ( 2012; ). Quantifying homologous replacement of loci between haloarchaeal species. . Genome Biol Evol 4:, 1223–1244. [CrossRef] [PubMed]
    [Google Scholar]
  68. Xu X. W., Wu Y. H., Zhang H. B., Wu M.. ( 2007; ). Halorubrum arcis sp. nov., an extremely halophilic archaeon isolated from a saline lake on the Qinghai–Tibet Plateau, China. . Int J Syst Evol Microbiol 57:, 1069–1072. [CrossRef] [PubMed]
    [Google Scholar]
  69. Yim K. J., Cha I. T., Lee H. W., Song H. S., Kim K. N., Lee S. J., Nam Y. D., Hyun D. W., Bae J. W. et al. ( 2014; ). Halorubrum halophilum sp. nov., an extremely halophilic archaeon isolated from a salt-fermented seafood. . Antonie van Leeuwenhoek 105:, 603–612. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000175
Loading
/content/journal/ijsem/10.1099/ijs.0.000175
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error