1887

Abstract

A thermophilic, anaerobic, iron-reducing bacterium (strain DY22619) was isolated from a sulfide sample collected from an East Pacific Ocean hydrothermal field at a depth of 2901 m. Cells were Gram-stain-negative, motile rods (2–10 µm in length, 0.5 µm in width) with multiple peritrichous flagella. The strain grew at 40–70 °C inclusive (optimum 60 °C), at pH 4.5–8.5 inclusive (optimum pH 7.0) and with sea salts concentrations of 1–10 % (w/v) (optimum 3 % sea salts) and NaCl concentrations of 1.5–5.0 % (w/v) (optimum 2.5 % NaCl). Under optimal growth conditions, the generation time was around 55 min. The isolate was an obligate chemoorganoheterotroph, utilizing complex organic compounds, amino acids, carbohydrates and organic acids including peptone, tryptone, beef extract, yeast extract, alanine, glutamate, methionine, threonine, fructose, mannose, galactose, glucose, palatinose, rhamnose, turanose, gentiobiose, xylose, sorbose, pyruvate, tartaric acid, α-ketobutyric acid, α-ketovaleric acid, galacturonic acid and glucosaminic acid. Strain DY22619 was strictly anaerobic and facultatively dependent on various forms of Fe(III) as an electron acceptor: insoluble forms and soluble forms. It did not reduce sulfite, sulfate, thiosulfate or nitrate. The genomic DNA G+C content was 29.0 mol%. Phylogenetic 16S rRNA gene sequence analyses revealed that the closest relative of strain DY22619 was MV1087, sharing 97.41 % 16S rRNA gene sequence similarity. On the basis of physiological distinctness and phylogenetic distance, the isolate is considered to represent a novel species of the genus , for which the name http://dx.doi.org/10.1601/nm.4081 sp. nov. is proposed. The type strain is DY22619 ( = JCM 19467 = DSM 27799 = MCCC1A06455).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000165
2015-06-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/6/1714.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000165&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  2. Chun J. , Lee J.-H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  3. Kashefi K. , Holmes D. E. , Baross J. A. , Lovley D. R. . ( 2003; ). Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. . Appl Environ Microbiol 69:, 2985–2993. [CrossRef] [PubMed]
    [Google Scholar]
  4. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721.[PubMed] [CrossRef]
    [Google Scholar]
  5. Kim M. , Oh H. S. , Park S. C. , Chun J. . ( 2014; ). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. . Int J Syst Evol Microbiol 64:, 346–351. [CrossRef] [PubMed]
    [Google Scholar]
  6. Lovley D. R. . ( 1995; ). Microbial reduction of iron, manganese, and other metals. . In Advances in Agronomy vol. 54, pp. 175–231. Edited by Sparks D. L. . . San Diego, CA:: Academic Press;. [CrossRef]
    [Google Scholar]
  7. Lovley D. R. , Phillips E. J. P. . ( 1986; a). Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal potomac river. . Appl Environ Microbiol 52, 751–757.[PubMed]
    [Google Scholar]
  8. Lovley D. R. , Phillips E. J. P. . ( 1986; b). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. . Appl Environ Microbiol 51:, 683–689.[PubMed]
    [Google Scholar]
  9. Lovley D. R. , Coates J. D. , Saffarini D. , Lonergan D. J. . ( 1997; ). Diversity of dissimilatory Fe(III)-reducing bacteria. . In Iron and Related Transition Metals in Microbial Metabolism, pp. 187–215. Edited by Winkelman G. , Carrano C. J. . . Chur, Switzerland:: Harwood Academic Publishers;.
    [Google Scholar]
  10. Mesbah M. , Whitman W. B. . ( 1989; ). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. . J Chromatogr A 479:, 297–306. [CrossRef]
    [Google Scholar]
  11. Miroshnichenko M. L. , Slobodkin A. I. , Kostrikina N. A. , L’Haridon S. , Nercessian O. , Spring S. , Stackebrandt E. , Bonch-Osmolovskaya E. A. , Jeanthon C. . ( 2003; ). Deferribacter abyssi sp. nov., an anaerobic thermophile from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. . Int J Syst Evol Microbiol 53:, 1637–1641. [CrossRef] [PubMed]
    [Google Scholar]
  12. Slobodkin A. I. , Campbell B. , Cary S. C. , Bonch-Osmolovskaya E. A. , Jeanthon C. . ( 2001; ). Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea hydrothermal vents at 13° N (East Pacific Rise). . FEMS Microbiol Ecol 36:, 235–243. [CrossRef] [PubMed]
    [Google Scholar]
  13. Slobodkin A. I. , Tourova T. P. , Kostrikina N. A. , Lysenko A. M. , German K. E. , Bonch-Osmolovskaya E. A. , Birkeland N. K. . ( 2006; ). Tepidimicrobium ferriphilum gen. nov., sp. nov., a novel moderately thermophilic, Fe (III)-reducing bacterium of the order Clostridiales. . International journal of systematic and evolutionary microbiology 56(2):, 369–372.[CrossRef]
    [Google Scholar]
  14. Slobodkina G. B. , Kolganova T. V. , Chernyh N. A. , Querellou J. , Bonch-Osmolovskaya E. A. , Slobodkin A. I. . ( 2009; ). Deferribacter autotrophicus sp. nov., an iron(III)-reducing bacterium from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 59:, 1508–1512. [CrossRef] [PubMed]
    [Google Scholar]
  15. Slobodkina G. B. , Reysenbach A.-L. , Panteleeva A. N. , Kostrikina N. A. , Wagner I. D. , Bonch-Osmolovskaya E. A. , Slobodkin A. I. . ( 2012; ). Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria . . Int J Syst Evol Microbiol 62:, 2463–2468. [CrossRef] [PubMed]
    [Google Scholar]
  16. Stackebrandt E. , Ebers J. . ( 2006; ). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  17. Vargas M. , Kashefi K. , Blunt-Harris E. L. , Lovley D. R. . ( 1998; ). Microbiological evidence for Fe(III) reduction on early Earth. . Nature 395:, 65–67. [CrossRef] [PubMed]
    [Google Scholar]
  18. Wery N. , Lesongeur F. , Pignet P. , Derennes V. , Cambon-Bonavita M. A. , Godfroy A. , Barbier G. . ( 2001; a). Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 51:, 495–504. [CrossRef] [PubMed]
    [Google Scholar]
  19. Wery N. , Moricet J.-M. , Cueff V. , Jean J. , Pignet P. , Lesongeur F. , Cambon-Bonavita M.-A. , Barbier G. . ( 2001; b). Caloranaerobacter azorensis gen. nov., sp. nov., an anaerobic thermophilic bacterium isolated from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 51:, 1789–1796. [CrossRef] [PubMed]
    [Google Scholar]
  20. Zhang Z. , Schwartz S. , Wagner L. , Miller W. . ( 2000; ). A greedy algorithm for aligning DNA sequences. . J Comput Biol 7:, 203–214. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000165
Loading
/content/journal/ijsem/10.1099/ijs.0.000165
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error