1887

Abstract

Two agar-degrading halophilic archaeal strains, 62E and 197A, were isolated from commercial salt samples. Cells were non-motile cocci, approximately 1.2–2.0 µm in diameter and stained Gram-negative. Colonies were pink-pigmented. Strain 62E was able to grow with 24–30 % (w/v) NaCl (optimum, 27 %), at pH 6.5–8.5 (optimum, pH 7.5) and at 22–47 °C (optimum, 42 °C). The 16S rRNA gene sequences of strains 62E and 197A were identical, and the level of DNA–DNA relatedness between them was 90 and 90 % (reciprocally). The closest relative was JCM 8878 with 99.7 % similarity in 16S rRNA orthologous gene sequences, followed by JCM 9578 (99.6 %), while similarities with other species of the genus were equal to or lower than 95.1 %. The gene tree strongly supported that the two strains were members of the genus . Mean DNA–DNA relatedness between strain 62E and JCM 8878 and JCM 9578 was 46 and 44 %, respectively. The major polar lipids were archaeol derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, derived from both CC and CC archaeol, and sulfated diglycosyl archaeol-1. Several unidentified glycolipids were present. Based on the phenotypic and phylogenetic analyses, the isolates are considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 62E ( = JCM 19592 = KCTC 4143).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000151
2015-05-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/5/1634.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000151&mimeType=html&fmt=ahah

References

  1. Cline S. W., Schalkwyk L. C., Doolittle W. F.. ( 1989; ). Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. . J Bacteriol 171:, 4987–4991.[PubMed]
    [Google Scholar]
  2. Denner E. B. M., McGenity T. J., Busse H.-J., Grant W. D., Wanner G., Stan-Lotter H.. ( 1994; ). Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. . Int J Syst Bacteriol 44:, 774–780. [CrossRef]
    [Google Scholar]
  3. Dussault H. P.. ( 1955; ). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Felsenstein, J. (2002). phylip (phylogeney inference package), version 3.6a. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  7. Goh F., Leuko S., Allen M. A., Bowman J. P., Kamekura M., Neilan B. A., Burns B. P.. ( 2006; ). Halococcus hamelinensis sp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay, Australia. . Int J Syst Evol Microbiol 56:, 1323–1329. [CrossRef] [PubMed]
    [Google Scholar]
  8. Gonzalez C., Gutierrez C., Ramirez C.. ( 1978; ). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24:, 710–715. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kamekura M.. ( 1993; ). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135–161. Edited by Vreeland R. H., Hochstein L. I... Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  10. Kates M.. ( 1993; ). Membrane lipids of archaea. . In The Biochemistry of Archaea (Archaebacteria), pp. 261–295. Edited by Kates M., Kushner D. J., Metheson A. T... Amsterdam:: Elsevier;. [CrossRef]
    [Google Scholar]
  11. Kocur M., Hodgkiss W.. ( 1973; ). Taxonomic status of the genus Halococcus Schoop. . Int J Syst Bacteriol 23:, 151–156. [CrossRef]
    [Google Scholar]
  12. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. ( 2007; ). clustal w and clustal x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef] [PubMed]
    [Google Scholar]
  13. Leuko S., Goh F., Ibáñez-Peral R., Burns B. P., Walter M. R., Neilan B. A.. ( 2008; ). Lysis efficiency of standard DNA extraction methods for Halococcus spp. in an organic rich environment. . Extremophiles 12:, 301–308. [CrossRef] [PubMed]
    [Google Scholar]
  14. Minegishi H., Kamekura M., Kitajima-Ihara T., Nakasone K., Echigo A., Shimane Y., Usami R., Itoh T., Ihara K.. ( 2012; ). Gene orders in the upstream of 16S rRNA genes divide genera of the family Halobacteriaceae into two groups. . Int J Syst Evol Microbiol 62:, 188–195. [CrossRef] [PubMed]
    [Google Scholar]
  15. Minegishi H., Shimane Y., Echigo A., Ohta Y., Hatada Y., Kamekura M., Maruyama T., Usami R.. ( 2013; ). Thermophilic and halophilic β-agarase from a halophilic archaeon Halococcus sp. 197A. . Extremophiles 17:, 931–939. [CrossRef] [PubMed]
    [Google Scholar]
  16. Montero C. G., Ventosa A., Rodriguez-Valera F., Ruiz-Berraquero F.. ( 1988; ). Taxonomic study of non-alkaliphilic Halococci. . J Gen Microbiol 134:, 725–732.
    [Google Scholar]
  17. Montero C. G., Ventosa A., Rodríguez-Valera F., Kates M., Moldoveanu N., Ruiz-Berraquero F.. ( 1989; ). Halococcus saccharolyticus sp. nov., a new species of extremely halophilic non-alkaliphilic cocci. . Syst Appl Microbiol 12:, 167–171. [CrossRef]
    [Google Scholar]
  18. Namwong S., Tanasupawat S., Visessanguan W., Kudo T., Itoh T.. ( 2007; ). Halococcus thailandensis sp. nov., from fish sauce in Thailand. . Int J Syst Evol Microbiol 57:, 2199–2203. [CrossRef] [PubMed]
    [Google Scholar]
  19. Oren A., Garrity G. M.. ( 2014; ). List of new names and new combinations previously effectively, but not validly, published. . Int J Syst Evol Microbiol 64:, 1455–1458. [CrossRef] [PubMed]
    [Google Scholar]
  20. Oren A., Ventosa A., Grant W. D.. ( 1997; ). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M.. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  22. Silvestro D., Michalak I.. ( 2012; ). raxmlGUI: a graphical front-end for RAxML. . Org Divers Evol 12:, 335–337. [CrossRef]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R.. ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  24. Stackebrandt E., Goebel B. E.. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Evol Microbiol 44:, 846–849.
    [Google Scholar]
  25. Stamatakis A., Ludwig T., Meier H.. ( 2005; ). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. . Bioinformatics 21:, 456–463. [CrossRef] [PubMed]
    [Google Scholar]
  26. Stan-Lotter H., Pfaffenhuemer M., Legat A., Busse H.-J., Radax C., Gruber C.. ( 2002; ). Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. . Int J Syst Evol Microbiol 52:, 1807–1814. [CrossRef] [PubMed]
    [Google Scholar]
  27. Tamaoka J., Komagata K.. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  28. Wang Q.-F., Li W., Yang H., Liu Y.-L., Cao H.-H., Dornmayr-Pfaffenhuemer M., Stan-Lotter H., Guo G.-Q.. ( 2007; ). Halococcus qingdaonensis sp. nov., a halophilic archaeon isolated from a crude sea-salt sample. . Int J Syst Evol Microbiol 57:, 600–604. [CrossRef] [PubMed]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  30. Yim K. J., Cha I. T., Whon T. W., Lee H. W., Song H. S., Kim K. N., Nam Y. D., Lee S. J., Bae J. W. et al. ( 2014; ). Halococcus sediminicola sp. nov., an extremely halophilic archaeon isolated from a marine sediment. . Antonie van Leeuwenhoek 105:, 73–79. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000151
Loading
/content/journal/ijsem/10.1099/ijs.0.000151
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error