1887

Abstract

Halophilic archaeal strain YGHS18 was isolated from the Yinggehai marine solar saltern near Shanya city of Hainan Province, China. Cells from the strain were observed to be pleomorphic rods, stained Gram-negative, and formed red-pigmented colonies on solid media. Strain YGHS18 was found to be able to grow at 20–50 °C (optimum 37 °C), with 0.9–4.8 M NaCl (optimum 2.1 M) and at pH 5.5–9.0 (optimum pH 7.0). The cells lysed in distilled water and the minimum NaCl concentration to prevent cell lysis was found to be 0.9 M. The major polar lipids of the strain were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, glucosyl mannosyl glucosyl diether and a diglycosyl diether (DGD-2). Strain YGHS18 possessed two heterogeneous 16S rRNA genes ( and ) and both were related to those of members of the genera (93.1–96.9 % sequence similarity) and (92.7–96.1 % similarity). The gene (orthologous gene) of strain YGHS18 clustered phylogenetically with members of the genus while the gene formed a paraphyly with members of the genera and . The ′ gene of strain YGHS18 was related phylogenetically to species of the genera (91.6–92.7 % sequence similarity) and (91.5–92.4 % similarity). gene analysis revealed that strain YGHS18 was related phylogenetically to species of the genus (92.2–92.9 % sequence similarity) rather than to those of the genus (90.9–91.7 % similarity). The DNA G+C content of strain YGHS18 was determined to be 64.5 mol%. The phenotypic, chemotaxonomic and phylogenetic properties suggested that strain YGHS18 ( = CGMCC 1.12128 = JCM 18369) represents a novel species of the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000150
2015-05-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/5/1628.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000150&mimeType=html&fmt=ahah

References

  1. Cui H.-L., Lin Z.-Y., Dong Y., Zhou P.-J., Liu S.-J.. ( 2007; ). Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. . Int J Syst Evol Microbiol 57:, 2204–2206. [CrossRef] [PubMed]
    [Google Scholar]
  2. Cui H.-L., Zhou P.-J., Oren A., Liu S.-J.. ( 2009; ). Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. . Extremophiles 13:, 31–37. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cui H.-L., Gao X., Yang X., Xu X.-W.. ( 2010; ). Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. . Extremophiles 14:, 493–499. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cui H.-L., Yang X., Mou Y. Z.. ( 2011; ). Salinarchaeum laminariae gen. nov., sp. nov.: a new member of the family Halobacteriaceae isolated from salted brown alga Laminaria. . Extremophiles 15:, 625–631. [CrossRef] [PubMed]
    [Google Scholar]
  5. Dussault H. P.. ( 1955; ). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  6. Echigo A., Minegishi H., Shimane Y., Kamekura M., Itoh T., Usami R.. ( 2013; ). Halomicroarcula pellucida gen. nov., sp. nov., a non-pigmented, transparent-colony-forming, halophilic archaeon isolated from solar salt. . Int J Syst Evol Microbiol 63:, 3556–3562. [CrossRef] [PubMed]
    [Google Scholar]
  7. Gonzalez C., Gutierrez C., Ramirez C.. ( 1978; ). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24:, 710–715. [CrossRef] [PubMed]
    [Google Scholar]
  8. Gutiérrez C., González C.. ( 1972; ). Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. . Appl Microbiol 24:, 516–517.[PubMed]
    [Google Scholar]
  9. Marmur J., Doty P.. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  10. McDade J. J., Weaver R. H.. ( 1959; ). Rapid methods for the detection of gelatin hydrolysis. . J Bacteriol 77:, 60–64.[PubMed]
    [Google Scholar]
  11. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H.-P.. ( 2013; ). When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195:, 413–418. [CrossRef] [PubMed]
    [Google Scholar]
  12. Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T.. ( 2010; ). Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B′ (rpoB′) gene. . Int J Syst Evol Microbiol 60:, 2398–2408. [CrossRef] [PubMed]
    [Google Scholar]
  13. Minegishi H., Kamekura M., Kitajima-Ihara T., Nakasone K., Echigo A., Shimane Y., Usami R., Itoh T., Ihara K.. ( 2012; ). Gene orders in the upstream of 16S rRNA genes divide genera of the family Halobacteriaceae into two groups. . Int J Syst Evol Microbiol 62:, 188–195. [CrossRef] [PubMed]
    [Google Scholar]
  14. Namwong S., Tanasupawat S., Kudo T., Itoh T.. ( 2011; ). Haloarcula salaria sp. nov. and Haloarcula tradensis sp. nov., isolated from salt in Thai fish sauce. . Int J Syst Evol Microbiol 61:, 231–236. [CrossRef] [PubMed]
    [Google Scholar]
  15. Oren A., Ventosa A., Grant W. D.. ( 1997; ). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  16. Oren A., Arahal D. R., Ventosa A.. ( 2009; ). Emended descriptions of genera of the family Halobacteriaceae. . Int J Syst Evol Microbiol 59:, 637–642. [CrossRef] [PubMed]
    [Google Scholar]
  17. Qiu X.-X., Zhao M.-L., Han D., Zhang W.-J., Dyall-Smith M. L., Cui H.-L.. ( 2013; ). Taxonomic study of the genera Halogeometricum and Halosarcina: transfer of Halosarcina limi and Halosarcina pallida to the genus Halogeometricum as Halogeometricum limi comb. nov. and Halogeometricum pallidum comb. nov., respectively. . Int J Syst Evol Microbiol 63:, 3915–3919. [CrossRef] [PubMed]
    [Google Scholar]
  18. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  19. Yang X., Cui H.-L.. ( 2012; ). Halomicrobium zhouii sp. nov., a halophilic archaeon from a marine solar saltern. . Int J Syst Evol Microbiol 62:, 1235–1240. [CrossRef] [PubMed]
    [Google Scholar]
  20. Yang Y., Cui H. L., Zhou P. J., Liu S. J.. ( 2007; ). Haloarcula amylolytica sp. nov., an extremely halophilic archaeon isolated from Aibi salt lake in Xin-Jiang, China. . Int J Syst Evol Microbiol 57:, 103–106. [CrossRef] [PubMed]
    [Google Scholar]
  21. Zhang W.-J., Cui H.-L.. ( 2014; ). Halomicroarcula limicola sp. nov., isolated from a marine solar saltern, and emended description of the genus Halomicroarcula. . Int J Syst Evol Microbiol 64:, 1747–1751. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000150
Loading
/content/journal/ijsem/10.1099/ijs.0.000150
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error