1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped, non-spore-forming bacterium (ChimEc512) was isolated from 56 host seedlings of the hyperaccumulating legume, which was on an old zinc mining site at Les Avinières, Saint-Laurent-Le-Minier, Gard, South of France. On the basis of 16S rRNA gene sequence similarities, strain ChimEc512 was shown to belong to the genus and to be most closely related to CCGE 2052 (98.4 %), CCBAU 85039 (98.1 %), CCGE 502 (98.0 %) and CCGE 501 (98.0 %). The phylogenetic relationships of ChimEc512 were confirmed by sequencing and analyses of and genes. DNA–DNA relatedness values of strain ChimEc512 with CCGE 2052, CCBAU 85039, CCGE 52, CCGE 502, CCBAU 85039 and KL09-16-8-2 were 27, 22, 16, 18, 19 and 11 %, respectively. The DNA G+C content of strain ChimEc512 was 58.9 mol%. The major cellular fatty acid was C18 : 1ω7, characteristic of the genus . The polar lipid profile included phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol and phosphatidylcholine and moderate amounts of aminolipids, phospholipid and sulfoquinovosyl diacylglycerol. Although ChimEc512 was able to nodulate , the nodC and nifH genes were not detected by PCR. The rhizobial strain was tolerant to high concentrations of heavy metals: up to 35 mM Zn and up to 0.5 mM Cd and its growth kinetics was not impacted by Zn. The results of DNA–DNA hybridizations and physiological tests allowed genotypic and phenotypic differentiation of strain ChimEc512 from species of the genus with validly published names. Strain ChimEc512, therefore, represents a novel species, for which the name sp. nov. is proposed, with the type strain ChimEc512 ( = DSM 26575 = CIP 110550).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000130
2015-05-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/5/1525.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000130&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef] [PubMed]
    [Google Scholar]
  2. De Ley J.. ( 1970; ). Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. . J Bacteriol 101:, 738–754.[PubMed]
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A.. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  4. Dorken G., Ferguson G. P., French C. E., Poon W. C. K.. ( 2012; ). Aggregation by depletion attraction in cultures of bacteria producing exopolysaccharide. . J R Soc Interface 9:, 3490–3502. [CrossRef] [PubMed]
    [Google Scholar]
  5. Escarré J., Lefèbvre C., Raboyeau S., Dossantos A., Gruber W., Cleyet Marel J. C., Frérot H., Noret N., Mahieu S. et al. ( 2011; ). Heavy metal concentration survey in soils and plants of the Les Malines mining district (Southern France): implications for soil restoration. . Water Air Soil Pollut 216:, 485–504. [CrossRef]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  7. Gaunt M. W., Turner S. L., Rigottier-Gois L., Lloyd-Macgilp S. A., Young J. P.. ( 2001; ). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. . Int J Syst Evol Microbiol 51:, 2037–2048. [CrossRef] [PubMed]
    [Google Scholar]
  8. Grison C., Escarré J., Berthommé M.-L.,, Couhet-Guichot J., Grison C., Hosy F.. ( 2010; ). Thlaspi caerulescens, un indicateur de la pollution d’un sol? Réflexion partagée entre étudiants et chercheurs autour d’un problème environnemental. . Actual Chim 340:, 27–32.
    [Google Scholar]
  9. Grison C. M., Renard B.-L., Grison C.. ( 2014; ). A simple synthesis of 2-keto-3-deoxy-d-erythro-hexonic acid isopropyl ester, a key sugar for the bacterial population living under metallic stress. . Bioorg Chem 52:, 50–55. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kämpfer P., Buczolits S., Albrecht A., Busse H. J., Stackebrandt E.. ( 2003; ). Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov.. Int J Syst Evol Microbiol 53:, 893–896. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kumar J. P., Jamal T., Doetsch A., Turner F. R., Duffy J. B.. ( 2004; ). CREB binding protein functions during successive stages of eye development in Drosophila. . Genetics 168:, 877–893. [CrossRef] [PubMed]
    [Google Scholar]
  12. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  13. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D.. ( 2000; ). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. . Int J Syst Evol Microbiol 50:, 787–801. [CrossRef] [PubMed]
    [Google Scholar]
  14. Vidal C., Chantreuil C., Berge O., Mauré L., Escarré J., Béna G., Brunel B., Cleyet-Marel J.-C.. ( 2009; ). Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. . Int J Syst Evol Microbiol 59:, 850–855. [CrossRef] [PubMed]
    [Google Scholar]
  15. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987; ). International Committee on Systemic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  16. Yadav N. K., Vyas S. R.. ( 1973; ). Salt and pH tolerance of rhizobia. . Folia Microbiol (Praha) 18:, 242–247. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000130
Loading
/content/journal/ijsem/10.1099/ijs.0.000130
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error