1887

Abstract

A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterium designated SGD-V-25 was isolated from Veraval sediment sample, India. Strain SGD-V-25 was capable of growing at 25–50 °C (optimum 37 °C), pH 6–12 (optimum pH 7.0) and with 0–5 % (w/v) NaCl. The taxonomic position of this strain was deduced using a polyphasic approach and the 16S rRNA gene sequence analysis showed that the isolate belongs to the phylum , forming the cluster with MTCC 1548, with which it shares highest similarity of 99.1 % with 13 nt differences. Other type strains of the genus showed less than 96 % similarity. The cell wall contained -diaminopimelic acid as the diagnostic diamino acid. The polar lipid profile of strain SGD-V-25 showed the presence of diphosphatidylglycerol, phosphatidylglycerol, phsophoglycolipid and two aminophospholipids. The predominant isoprenoid quinone was MK-7. The major cellular fatty acids were iso-C, anteiso-C, anteiso-C, iso-C, Cω11 and C The genomic DNA G+C content of strain SGD-V-25 was 37.6 mol%. On the basis of phenotypic characteristics, phylogenetic analysis and DNA–DNA hybridization, strain SGD-V-25 could be clearly distinguished from closely related members of the genus , and the name sp. nov., is proposed to accommodate this strain. The type strain is SGD-V-25 ( = NCIM 5513 = DSM 28241).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000114
2015-05-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/5/1421.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000114&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Ventosa A.. ( 2002; ). Moderately halophilic and halotolerant species of Bacillus and related genera. . In Applications and Systematics of Bacillus and Relatives, pp. 83–99. Edited by Berkeley R., Heyndrickx M., Logan N., De Vos P... Oxford:: Blackwell;. [CrossRef]
    [Google Scholar]
  2. Buck J. D.. ( 1982; ). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  3. de la Haba R. R., Sánchez-Porro C., Márquez M. C., Ventosa A.. ( 2011; ). Taxonomy of halophiles. . In Extremophiles Handbook, pp. 255–308. Edited by Horikoshi K... Tokyo:: Springer;. [CrossRef]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A.. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Fitch W. M.. ( 1971; ). Toward defining the course of evolution: minimum change for a specified tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  8. Gillis M., De Ley J., De Cleene M.. ( 1970; ). The determination of molecular weight of bacterial genome DNA from renaturation rates. . Eur J Biochem 12:, 143–153. [CrossRef] [PubMed]
    [Google Scholar]
  9. Hasegawa T., Takizawa M., Tanida S.. ( 1983; ). A rapid analysis for chemical grouping of aerobic actinomycetes. . J Gen Appl Microbiol 29:, 319–322. [CrossRef]
    [Google Scholar]
  10. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kimura M.. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kroppenstedt R. M.. ( 1982; ). Separation of bacterial menaquinones by HPLC using reverse phase (RP-18) and a silver-loaded ion exchanger. . J Liq Chromatogr 5:, 2359–2367. [CrossRef]
    [Google Scholar]
  13. Leifson E.. ( 1960; ). Atlas of Bacterial Flagellation. London:: Academic Press;.
    [Google Scholar]
  14. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L.. ( 2007; ). Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. . Int J Syst Evol Microbiol 57:, 1424–1428. [CrossRef] [PubMed]
    [Google Scholar]
  15. Loveland-Curtze J., Miteva V. I., Brenchley J. E.. ( 2011; ). Evaluation of a new fluorimetric DNA-DNA hybridization method. . Can J Microbiol 57:, 250–255. [CrossRef] [PubMed]
    [Google Scholar]
  16. Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.
  17. Marmur J., Doty P.. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  18. Márquez M. C., Sánchez-Porro C., Ventosa A.. ( 2011; ). Halophilic and halo-alkaliphilic, aerobic endospore-forming bacteria in soil. . In Endospore-forming Soil Bacteria, pp. 309–339. Edited by Logan N. A., De Vos P... Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B.. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  20. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H.. ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M.. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  22. Sasser M.. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20:, 16.
    [Google Scholar]
  23. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013; ). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  25. Tittsler R. P., Sandholzer L. A.. ( 1936; ). The use of semi-solid agar for the detection of bacterial motility. . J Bacteriol 31:, 575–580.[PubMed]
    [Google Scholar]
  26. Ventosa A.. ( 2006; ). Unusual micro-organisms from unusual habitats: hypersaline environments. . In Prokaryotic Diversity: Mechanisms and Significance, pp. 223–254. Edited by Logan N. A., Lappin-Scott H. M., Oyston P. C. F... Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  27. Ventosa A., Nieto J. J., Oren A.. ( 1998; ). Biology of moderately halophilic aerobic bacteria. . Microbiol Mol Biol Rev 62:, 504–544.[PubMed]
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  29. Xu P., Li W.-J., Tang S.-K., Zhang Y.-Q., Chen G.-Z., Chen H.-H., Xu L.-H., Jiang C.-L.. ( 2005; ). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. . Int J Syst Evol Microbiol 55:, 1149–1153. [CrossRef] [PubMed]
    [Google Scholar]
  30. Yi H., Chang Y.-H., Oh H. W., Bae K. S., Chun J.. ( 2003; ). Zooshikella ganghwensis gen. nov., sp. nov., isolated from tidal flat sediments. . Int J Syst Evol Microbiol 53:, 1013–1018. [CrossRef] [PubMed]
    [Google Scholar]
  31. Yoon J.-H., Kim I.-G., Kang K. H., Oh T.-K., Park Y.-H.. ( 2003; a). Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. . Int J Syst Evol Microbiol 53:, 1297–1303. [CrossRef] [PubMed]
    [Google Scholar]
  32. Yoon J.-H., Weiss N., Kang K. H., Oh T.-K., Park Y.-H.. ( 2003; b). Planococcus maritimus sp. nov., isolated from sea water of a tidal flat in Korea. . Int J Syst Evol Microbiol 53:, 2013–2017. [CrossRef] [PubMed]
    [Google Scholar]
  33. Yoon J.-H., Kang K. H., Oh T.-K., Park Y.-H.. ( 2004; a). Shewanella gaetbuli sp. nov., a slight halophile isolated from a tidal flat in Korea. . Int J Syst Evol Microbiol 54:, 487–491. [CrossRef] [PubMed]
    [Google Scholar]
  34. Yoon J.-H., Kim I.-G., Oh T.-K., Park Y.-H.. ( 2004; b). Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. . Int J Syst Evol Microbiol 54:, 1111–1116. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000114
Loading
/content/journal/ijsem/10.1099/ijs.0.000114
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error