1887

Abstract

A yellow-pigmented, Gram-stain-negative, rod-shaped, non-spore-forming bacterium designated strain HLJ-RS18, which could degrade fluorene, was isolated from rice seeds collected from Heilongjiang Province, China. Similarities of full-length of 16S rRNA gene sequences between strain HJL-RS18 and the type strains of the genus with validly published names ranged from 93.8 to 97.1 %. Phylogenetic analysis with maximum-likelihood and neighbour-joining methods revealed that strain HLJ-RS18 belonged to genus and strain HLJ-RS18 formed a distinct clade to BUT-14 (96.9 % similarity based on 16S rRNA gene). DNA–DNA hybridization of HLJ-RS18 and BUT-14 showed a low relatedness value of 22.4±0.9 %, which indicated that strain HLJ-RS18 represents a novel species of the genus . The genomic DNA G+C content of strain HLJ-RS18 was 62 mol%. Ubiquinone Q-10 was the major respiratory quinone. Spermidine was the predominant polyamine. Polar lipids consisted mainly of aminophospholipid, phosphatidylglycerol, phosphatidylethanolamine, phospholipid and sphingoglycolipid. The predominant fatty acid composition of HLJ-RS18 were summed 8 (Cω7 and/or Cω6, 61.5 %), C (14.2 %), summed 3 (Cω7 and/or Cω6, 13.5 %) and C 2-OH (6.8 %). Phylogenetic analysis, DNA–DNA hybridization, chemotaxonomic data and phenotypic characteristics support the conclusion that HLJ-RS18 represents a novel species within the genus . Therefore, we propose the species sp. nov. with HLJ-RS18 ( = DSM 27568 = ACCC19180) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000111
2015-05-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/5/1409.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000111&mimeType=html&fmt=ahah

References

  1. Addison S. L., Foote S. M., Reid N. M., Lloyd-Jones G.. ( 2007; ). Novosphingobium nitrogenifigens sp. nov., a polyhydroxyalkanoate-accumulating diazotroph isolated from a New Zealand pulp and paper wastewater. . Int J Syst Evol Microbiol 57:, 2467–2471. [CrossRef] [PubMed]
    [Google Scholar]
  2. Altenburger P., Kämpfer P., Akimov V. N., Lubit W., Busse H. J.. ( 1997; ). Polyamine distribution in Actinomycetes with Group B Peptidoglycan and species of the Genera Brevibacterium, Corynebacterium, and Tsukamurella. . Int J Syst Bacteriol 47:, 270–277. [CrossRef]
    [Google Scholar]
  3. Bligh E. G., Dyer W. J.. ( 1959; ). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef] [PubMed]
    [Google Scholar]
  4. Burland T. G.. ( 2000; ). DNASTAR’s Lasergene sequence analysis software. . Methods Mol Biol 132:, 71–91.[PubMed]
    [Google Scholar]
  5. Busse H.-J., Auling G.. ( 1988; ). Polyamine patterns as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A.. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  7. Fredrickson J. K., Brockman F. J., Workman D. J., Li S. W., Stevens T. O.. ( 1991; ). Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds. . Appl Environ Microbiol 57:, 796–803.[PubMed]
    [Google Scholar]
  8. Gao S. M., Seo J. S., Wang J., Keum Y. S., Li J. Q., Li Q. X.. ( 2013; ). Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6. . Int. Biodeter. Biodegr. 79:, 98–104. [CrossRef]
    [Google Scholar]
  9. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. ( 1994; ). Methods for General and Molecular Bacteriology. Washington, D.C.:: American Society for Microbiology;.
    [Google Scholar]
  10. Glaeser S. P., Kämpfer P., Busse H. J., Langer S., Glaeser J.. ( 2009; ). Novosphingobium acidiphilum sp. nov., an acidophilic salt-sensitive bacterium isolated from the humic acid-rich Lake Grosse Fuchskuhle. . Int J Syst Evol Microbiol 59:, 323–330. [CrossRef] [PubMed]
    [Google Scholar]
  11. Huß V. A., Festl H., Schleifer K. H.. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef] [PubMed]
    [Google Scholar]
  12. Huo, Y. Y., You, H., Li, Z. Y., Wang, C. S. & Xu, X. W. (2015). Novosphingobium marinum sp. nov., isolated from seawater. Int J Syst Evol Microbiol 65, 676–680.
  13. Jones M. P., McCarthy A. J., Cross T.. ( 1979; ). Taxonomic and serologic studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula. . J Gen Microbiol 115:, 343–354. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kämpfer P., Young C. C., Busse H.-J., Lin S. Y., Rekha P. D., Arun A. B., Chen W. M., Shen F. T., Wu Y. H.. ( 2011; ). Novosphingobium soli sp. nov., isolated from soil. . Int J Syst Evol Microbiol 61:, 259–263. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kimura M.. ( 1980; ). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. . Mol Biol Evol 16:, 111–120. [CrossRef]
    [Google Scholar]
  16. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E.. ( 1988; ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradorhizobium japonicum. . Int J Syst Evol Microbiol 38:, 358–361.
    [Google Scholar]
  17. Lane D. J.. ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... London:: Wiley;.
    [Google Scholar]
  18. Marmur, J. & Doty, P. (1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.
  19. Miller L. T.. ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  20. Niharika N., Moskalikova H., Kaur J., Sedlackova M., Hampl A., Damborsky J., Prokop Z., Lal R.. ( 2013; ). Novosphingobium barchaimii sp. nov., isolated from hexachlorocyclohexane-contaminated soil. . Int J Syst Evol Microbiol 63:, 667–672. [CrossRef] [PubMed]
    [Google Scholar]
  21. Parte A. C.. ( 2014; ). LPSN–list of prokaryotic names with standing in nomenclature. . Nucleic Acids Res 42: ( Database issue ), D613–D616. [CrossRef] [PubMed]
    [Google Scholar]
  22. Saxena A., Anand S., Dua A., Sangwan N., Khan F., Lal R.. ( 2013; ). Novosphingobium lindaniclasticum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. . Int J Syst Evol Microbiol 63:, 2160–2167. [CrossRef] [PubMed]
    [Google Scholar]
  23. Seo J.-S., Keum Y.-S., Harada R. M., Li Q. X.. ( 2007; ). Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii. . J Agric Food Chem 55:, 5383–5389. [CrossRef] [PubMed]
    [Google Scholar]
  24. Seo J.-S., Keum Y.-S., Li Q. X.. ( 2009; ). Bacterial degradation of aromatic compounds. . Int J Environ Res Public Health 6:, 278–309. [CrossRef] [PubMed]
    [Google Scholar]
  25. Sohn J. H., Kwon K.-K., Kang J.-H., Jung H.-B., Kim S.-J.. ( 2004; ). Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. . Int J Syst Evol Microbiol 54:, 1483–1487. [CrossRef] [PubMed]
    [Google Scholar]
  26. Stanier R. Y., Palleroni N. J., Doudoroff M.. ( 1966; ). The aerobic pseudomonads: a taxonomic study. . J Gen Microbiol 43:, 159–271. [CrossRef] [PubMed]
    [Google Scholar]
  27. Suzuki S., Hiraishi A.. ( 2007; ). Novosphingobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated environments. . J Gen Appl Microbiol 53:, 221–228. [CrossRef] [PubMed]
    [Google Scholar]
  28. Takeuchi M., Hamana K., Hiraishi A.. ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  29. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013; ). mega6: Molecular Evolutionary Genetics Analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  30. Tindall B. J.. ( 1990; a). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  31. Tindall B. J.. ( 1990; b). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  32. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R.. ( 2007;) Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J.A., Marzluf G. A., Schmidt T. M., Snyder L. R... Washington DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  33. Tittsler R. P., Sandholzer L. A.. ( 1936; ). The use of semi-solid agar for the detection of bacterial motility. . J Bacteriol 31:, 575–580.[PubMed]
    [Google Scholar]
  34. Yuan J., Lai Q., Zheng T., Shao Z.. ( 2009; ). Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. . Int J Syst Evol Microbiol 59:, 2084–2088. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000111
Loading
/content/journal/ijsem/10.1099/ijs.0.000111
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error