1887

Abstract

A yellow-pigmented, motile, Gram-stain-negative, moderately halophilic and strictly aerobic bacterium, designated BA42AL-1, was isolated from water of a saltern of Santa Pola, Alicante, Spain. Strain BA42AL-1 grew in media containing 5–20 % (w/v) salts (optimum 7.5 % salts). It grew between pH 6.0 and 9.0 (optimally at pH 7.5) and at 15–45 °C (optimally at 37 °C). Phylogenetic analysis based on the comparison of 16S rRNA gene sequences revealed that strain BA42AL-1 is a member of the genus . The closest relatives to this strain were YIM 95345 and CG12 with sequence similarities of 99.4 % and 97.0 %, respectively. DNA–DNA hybridization between the novel isolate and YIM 95345 revealed a relatedness of 54 %. The major fatty acids of strain BA42AL-1 were Cω6/Cω7, C cyclo ω and C and lower contents of C and C. The polar lipid pattern of strain BA42AL-1 consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylcholine, two glycolipids, a lipid and four unknown phospholipids. The G+C content of the genomic DNA of this strain was 65.0 mol%. Based on the DNA–DNA hybridization, phenotypic, chemotaxonomic and phylogenetic data presented in this study, strain BA42AL-1 is proposed as a novel species of the genus , for which the name sp. nov. is suggested. The type strain is BA42AL-1 ( = CCM 8472 = CECT 8326 = LMG 27614).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000106
2015-04-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/4/1354.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000106&mimeType=html&fmt=ahah

References

  1. Barrow G. I. , Feltham R. K. A. . (editors) ( 2003; ). Cowan and Steel's Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  2. Bauer A. W. , Kirby W. M. M. , Sherris J. C. , Turck M. . ( 1966; ). Antibiotic susceptibility testing by a standardized single disk method. . Am J Clin Pathol 45:, 493–496.[PubMed]
    [Google Scholar]
  3. Clarke P. H. . ( 1953; ). Hydrogen sulphide production by bacteria. . J Gen Microbiol 8:, 397–407. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cowan S. T. , Steel K. J. . ( 1977; ). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  5. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Fernández A. B. , Ghai R. , Martin-Cuadrado A. B. , Sánchez-Porro C. , Rodriguez-Valera F. , Ventosa A. . ( 2014; a). Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. . FEMS Microbiol Ecol 88:, 623–635. [CrossRef] [PubMed]
    [Google Scholar]
  7. Fernández A. B. , Vera-Gargallo B. , Sánchez-Porro C. , Ghai R. , Papke R. T. , Rodriguez-Valera F. , Ventosa A. . ( 2014; b). Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach. . Front Microbiol 5:, 196. [CrossRef] [PubMed]
    [Google Scholar]
  8. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  9. Ghai R. , Pašić L. , Fernández A. B. , Martin-Cuadrado A. B. , Mizuno C. M. , McMahon K. D. , Papke R. T. , Stepanauskas R. , Rodriguez-Brito B. et al. ( 2011; ). New abundant microbial groups in aquatic hypersaline environments. . Sci Rep 1:, 135. [CrossRef] [PubMed]
    [Google Scholar]
  10. Johnson J. L. . ( 1994; ). Similarity analysis of DNAs. . In Methods for General and Molecular Bacteriology, pp. 655–681. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  11. Kim O.-S. , Cho Y.-J. , Lee K. , Yoon S.-H. , Kim M. , Na H. , Park S.-C. , Jeon Y. S. , Lee J.-H. et al. ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721.[PubMed] [CrossRef]
    [Google Scholar]
  12. León M. J. , Fernández A. B. , Ghai R. , Sánchez-Porro C. , Rodriguez-Valera F. , Ventosa A. . ( 2014; ). From metagenomics to pure culture: isolation and characterization of the moderately halophilic bacterium Spiribacter salinus gen. nov., sp. nov.. Appl Environ Microbiol 80:, 3850–3857. [CrossRef] [PubMed]
    [Google Scholar]
  13. López-Pérez M. , Ghai R. , Leon M. J. , Rodríguez-Olmos A. , Copa-Patiño J. L. , Soliveri J. , Sanchez-Porro C. , Ventosa A. , Rodriguez-Valera F. . ( 2013; ). Genomes of “Spiribacter”, a streamlined, successful halophilic bacterium. . BMC Genomics 14:, 787. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. et al. ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  15. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  16. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  17. Márquez M. C. , Carrasco I. J. , Xue Y. , Ma Y. , Cowan D. A. , Jones B. E. , Grant W. D. , Ventosa A. . ( 2007; ). Aquisalimonas asiatica gen. nov., sp. nov., a moderately halophilic bacterium isolated from an alkaline, saline lake in Inner Mongolia, China. . Int J Syst Evol Microbiol 57:, 1137–1142. [CrossRef] [PubMed]
    [Google Scholar]
  18. Mellado E. , Moore E. R. B. , Nieto J. J. , Ventosa A. . ( 1995; ). Phylogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcaniella eurihalina, and Deleya salina and reclassification of V. eurihalina as Halomonas eurihalina comb. nov.. Int J Syst Bacteriol 45:, 712–716. [CrossRef] [PubMed]
    [Google Scholar]
  19. Owen R. J. , Hill L. R. . ( 1979; ). The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. . In Identification Methods for Microbiologists, , 2nd edn., pp. 277–296. Edited by Skinner F. A. , Lovelock D. W. . . London:: Academic Press;.
    [Google Scholar]
  20. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  21. Sasser M . . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  22. Scorpio, R. (2000). Fundamentals of acids, bases, buffers and their application to biochemical systems. Kendall/Hunt Publishing Company.
  23. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  24. Subov N. N . . ( 1931; ). Oceanographical Tables. Moscow: USSR Oceanographic Institute Hydrometeorological Commission (in Russian). .
    [Google Scholar]
  25. Ventosa A. , Quesada E. , Rodríguez-Valera F. , Ruiz-Berraquero F. , Ramos-Cormenzana A. . ( 1982; ). Numerical taxonomy of moderately halophilic Gram-negative rods. . J Gen Microbiol 128:, 1959–1968.
    [Google Scholar]
  26. Ventosa A. , Gutiérrez M. C. , Kamekura M. , Zvyagintseva I. S. , Oren A. . ( 2004; ). Taxonomic study of Halorubrum distributum and proposal of Halorubrum terrestre sp. nov.. Int J Syst Evol Microbiol 54:, 389–392. [CrossRef] [PubMed]
    [Google Scholar]
  27. Ventosa A. , Fernández A. B. , León M. J. , Sánchez-Porro C. , Rodriguez-Valera F. . ( 2014; ). The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. . Extremophiles 18:, 811–824. [CrossRef] [PubMed]
    [Google Scholar]
  28. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. et al. ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  29. Zhang Y.-J. , Jia M. , Ma Y.-C. , Lu K.-Y. , Tian F. , Klenk H.-P. , Zhou Y. , Tang S.-K. . ( 2014; ). Aquisalimonas halophila sp. nov., a moderately halophilic bacterium isolated from a hypersaline mine. . Int J Syst Evol Microbiol 64:, 2210–2216. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000106
Loading
/content/journal/ijsem/10.1099/ijs.0.000106
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error