1887

Abstract

Bacterial classification is a long-standing problem for taxonomists and species definition itself is constantly debated among specialists. The classification of strict intracellular bacteria such as members of the order mainly relies on DNA- or protein-based phylogenetic reconstructions because these organisms exhibit few phenotypic differences and are difficult to culture. The availability of full genome sequences allows the comparison of the performance of conserved protein sequences to reconstruct phylogeny. This approach permits the identification of markers that maximize the phylogenetic signal and the robustness of the inferred tree. In this study, a set of 424 core proteins was identified and concatenated to reconstruct a reference species tree. Although individual protein trees present variable topologies, we detected only few cases of incongruence with the reference species tree, which were due to horizontal gene transfers. Detailed analysis of the phylogenetic information of individual protein sequences (i) showed that phylogenies based on single randomly chosen core proteins are not reliable and (ii) led to the identification of twenty taxonomically highly reliable proteins, allowing the reconstruction of a robust tree close to the reference species tree. We recommend using these protein sequences to precisely classify newly discovered isolates at the family, genus and species levels.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000090
2015-04-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/4/1381.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000090&mimeType=html&fmt=ahah

References

  1. Aguileta G. , Marthey S. , Chiapello H. , Lebrun M.-H. , Rodolphe F. , Fournier E. , Gendrault-Jacquemard A. , Giraud T. . ( 2008; ). Assessing the performance of single-copy genes for recovering robust phylogenies. . Syst Biol 57:, 613–627. [CrossRef] [PubMed]
    [Google Scholar]
  2. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bapteste E. , Boucher Y. , Leigh J. , Doolittle W. F. . ( 2004; ). Phylogenetic reconstruction and lateral gene transfer. . Trends Microbiol 12:, 406–411. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bapteste E. , Susko E. , Leigh J. , MacLeod D. , Charlebois R. L. , Doolittle W. F. . ( 2005; ). Do orthologous gene phylogenies really support tree-thinking?. BMC Evol Biol 5:, 33. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bavoil P. , Kaltenboeck B. , Greub G. . ( 2013; ). In Chlamydia veritas. . Pathog Dis 67:, 89–90. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bertelli C. , Collyn F. , Croxatto A. , Rückert C. , Polkinghorne A. , Kebbi-Beghdadi C. , Goesmann A. , Vaughan L. , Greub G. . ( 2010; ). The Waddlia genome: a window into chlamydial biology. . PLoS ONE 5:, e10890. [CrossRef] [PubMed]
    [Google Scholar]
  7. Brunelle B. W. , Sensabaugh G. F. . ( 2006; ). The ompA gene in Chlamydia trachomatis differs in phylogeny and rate of evolution from other regions of the genome. Infect Immun 74, 578–585. [CrossRef] [PubMed]
  8. Chan J. Z.-M. , Halachev M. R. , Loman N. J. , Constantinidou C. , Pallen M. J. . ( 2012; ). Defining bacterial species in the genomic era: insights from the genus Acinetobacter . . BMC Microbiol 12:, 302. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chen W. , Zhang C. K. , Cheng Y. , Zhang S. , Zhao H. . ( 2013; ). A comparison of methods for clustering 16S rRNA sequences into OTUs. . PLoS ONE 8:, e70837. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chun J. , Rainey F. A. . ( 2014; ). Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea . . Int J Syst Evol Microbiol 64:, 316–324. [CrossRef] [PubMed]
    [Google Scholar]
  11. Collingro A. , Tischler P. , Weinmaier T. , Penz T. , Heinz E. , Brunham R. C. , Read T. D. , Bavoil P. M. , Sachse K. et al. ( 2011; ). Unity in variety–the pan-genome of the Chlamydiae . . Mol Biol Evol 28:, 3253–3270. [CrossRef] [PubMed]
    [Google Scholar]
  12. Darriba D. , Taboada G. L. , Doallo R. , Posada D. . ( 2011; ). ProtTest 3: fast selection of best-fit models of protein evolution. . Bioinformatics 27:, 1164–1165. [CrossRef] [PubMed]
    [Google Scholar]
  13. Delsuc F. , Brinkmann H. , Philippe H. . ( 2005; ). Phylogenomics and the reconstruction of the tree of life. . Nat Rev Genet 6:, 361–375. [CrossRef] [PubMed]
    [Google Scholar]
  14. Domman D. , Collingro A. , Lagkouvardos I. , Gehre L. , Weinmaier T. , Rattei T. , Subtil A. , Horn M. . ( 2014; ). Massive expansion of ubiquitination-related gene families within the Chlamydiae . . Mol Biol Evol 31:, 2890–2904. [CrossRef] [PubMed]
    [Google Scholar]
  15. Everett K. D. , Bush R. M. , Andersen A. A. . ( 1999; ). Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. . Int J Syst Bacteriol 49:, 415–440. [CrossRef] [PubMed]
    [Google Scholar]
  16. Fox G. E. , Stackebrandt E. , Hespell R. B. , Gibson J. , Maniloff J. , Dyer T. A. , Wolfe R. S. , Balch W. E. , Tanner R. S. et al. ( 1980; ). The phylogeny of prokaryotes. . Science 209:, 457–463. [CrossRef] [PubMed]
    [Google Scholar]
  17. Fraley C. , Raftery A. E. . ( 2006; ). mclust version 3 for R: normal mixture modeling and model-based clustering, Technical Report no. 504, Department of Statistics, University of Washington, September 2006.
  18. Goldman N. . ( 1998; ). Phylogenetic information and experimental design in molecular systematics. . Proc Biol Sci 265:, 1779–1786. [CrossRef] [PubMed]
    [Google Scholar]
  19. Gouy M. , Guindon S. , Gascuel O. . ( 2010; ). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. . Mol Biol Evol 27:, 221–224. [CrossRef] [PubMed]
    [Google Scholar]
  20. Greub G. . ( 2010; a). International Committee on Systematics of Prokaryotes. Subcommittee on the taxonomy of the Chlamydiae: minutes of the inaugural closed meeting, 21 March 2009, Little Rock, AR, USA. . Int J Syst Evol Microbiol 60:, 2691–2693. [CrossRef] [PubMed]
    [Google Scholar]
  21. Greub G. . ( 2010; b). International Committee on Systematics of Prokaryotes. Subcommittee on the taxonomy of the Chlamydiae: minutes of the closed meeting, 21 June 2010, Hof bei Salzburg, Austria. . Int J Syst Evol Microbiol 60:, 2694. [CrossRef] [PubMed]
    [Google Scholar]
  22. Greub G. . ( 2013; ). International Committee on Systematics of Prokaryotes. Subcommittee on the taxonomy of Chlamydiae: minutes of the closed meeting, 23 February 2011, Ascona, Switzerland. . Int J Syst Evol Microbiol 63:, 1934–1935. [CrossRef]
    [Google Scholar]
  23. Greub G. , Raoult D. . ( 2003; ). History of the ADP/ATP-translocase-encoding gene, a parasitism gene transferred from a Chlamydiales ancestor to plants 1 billion years ago. Appl Environ Microbiol 69, 5530–5535. [CrossRef]
  24. Guindon S. , Gascuel O. . ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef] [PubMed]
    [Google Scholar]
  25. Harris S. R. , Clarke I. N. , Seth-Smith H. M. B. , Solomon A. W. , Cutcliffe L. T. , Marsh P. , Skilton R. J. , Holland M. J. , Mabey D. et al. . ( 2012; ). Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat Genet 44, 413–9. [CrossRef] [PubMed]
  26. Horn M. . ( 2008; ). Chlamydiae as symbionts in eukaryotes. . Annu Rev Microbiol 62:, 113–131. [CrossRef] [PubMed]
    [Google Scholar]
  27. Jeffroy O. , Brinkmann H. , Delsuc F. , Philippe H. . ( 2006; ). Phylogenomics: the beginning of incongruence?. Trends Genet 22:, 225–231. [CrossRef] [PubMed]
    [Google Scholar]
  28. Katoh K. , Misawa K. , Kuma K. , Miyata T. . ( 2002; ). mafft: a novel method for rapid multiple sequence alignment based on fast Fourier transform. . Nucleic Acids Res 30:, 3059–3066. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kim M. , Oh H.-S. , Park S.-C. , Chun J. . ( 2014; ). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. . Int J Syst Evol Microbiol 64:, 346–351. [CrossRef] [PubMed]
    [Google Scholar]
  30. Klint M. , Fuxelius H.-H. , Goldkuhl R. R. , Skarin H. , Rutemark C. , Andersson S. G. E. , Persson K. , Herrmann B. . ( 2007; ). High-resolution genotyping of Chlamydia trachomatis strains by multilocus sequence analysis. . J Clin Microbiol 45:, 1410–1414. [CrossRef] [PubMed]
    [Google Scholar]
  31. Kurtz S. , Phillippy A. , Delcher A. L. , Smoot M. , Shumway M. , Antonescu C. , Salzberg S. L. . ( 2004; ). Versatile and open software for comparing large genomes. . Genome Biol 5:, R12. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lagkouvardos I. , Weinmaier T. , Lauro F. M. , Cavicchioli R. , Rattei T. , Horn M. . ( 2014; ). Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological diversity of the Chlamydiae . . ISME J 8:, 115–125. [CrossRef] [PubMed]
    [Google Scholar]
  33. Leigh J. W. , Lapointe F.-J. , Lopez P. , Bapteste E. . ( 2011; ). Evaluating phylogenetic congruence in the post-genomic era. . Genome Biol Evol 3:, 571–587. [CrossRef] [PubMed]
    [Google Scholar]
  34. Lerat E. , Daubin V. , Moran N. A. . ( 2003; ). From gene trees to organismal phylogeny in prokaryotes: the case of the γ-Proteobacteria. . PLoS Biol 1:, e19. [CrossRef] [PubMed]
    [Google Scholar]
  35. Lienard J. , Croxatto A. , Prod’hom G. , Greub G. . ( 2011; ). Estrella lausannensis, a new star in the Chlamydiales order. . Microbes Infect 13:, 1232–1241. [CrossRef] [PubMed]
    [Google Scholar]
  36. Pannekoek Y. , Morelli G. , Kusecek B. , Morré S. A. , Ossewaarde J. M. , Langerak A. A. , van der Ende A. . ( 2008; ). Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis . . BMC Microbiol 8:, 42. [CrossRef] [PubMed]
    [Google Scholar]
  37. Penn O. , Privman E. , Ashkenazy H. , Landan G. , Graur D. , Pupko T. . ( 2010; ). guidance: a web server for assessing alignment confidence scores. . Nucleic Acids Res 38: (Web Server issue), W23–W28. [CrossRef] [PubMed]
    [Google Scholar]
  38. R Core Team ( 2014; ). R: A Language and Environment for Statistical Computing. Vienna:: R Foundation for Statistical Computing;.
    [Google Scholar]
  39. Ramasamy D. , Mishra A. K. , Lagier J.-C. , Padhmanabhan R. , Rossi M. , Sentausa E. , Raoult D. , Fournier P.-E. . ( 2014; ). A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. . Int J Syst Evol Microbiol 64:, 384–391. [CrossRef] [PubMed]
    [Google Scholar]
  40. Rice P. , Longden I. , Bleasby A. . ( 2000; ). emboss: the European molecular biology open software suite. . Trends Genet 16:, 276–277. [CrossRef] [PubMed]
    [Google Scholar]
  41. Richter M. , Rosselló-Móra R. . ( 2009; ). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef] [PubMed]
    [Google Scholar]
  42. Robinson D. F. , Foulds L. R. . ( 1981; ). Comparison of phylogenetic trees. . Math Biosci 53:, 131–147. [CrossRef]
    [Google Scholar]
  43. Rokas A. , Carroll S. B. . ( 2006; ). Bushes in the tree of life. . PLoS Biol 4:, e352. [CrossRef] [PubMed]
    [Google Scholar]
  44. Rosselló-Mora R. , Amann R. . ( 2001; ). The species concept for prokaryotes. . FEMS Microbiol Rev 25:, 39–67. [CrossRef] [PubMed]
    [Google Scholar]
  45. Schachter J. , Stephens R. S. , Timms P. , Kuo C. , Bavoil P. M. , Birkelund S. , Boman J. , Caldwell H. , Campbell L. A. et al. ( 2001; ). Radical changes to chlamydial taxonomy are not necessary just yet. . Int J Syst Evol Microbiol 51:, 249, author reply 251–253.[PubMed] [CrossRef]
    [Google Scholar]
  46. Schliep K. P. . ( 2011; ). phangorn: phylogenetic analysis in R. . Bioinformatics 27:, 592–593. [CrossRef] [PubMed]
    [Google Scholar]
  47. Shimodaira H. . ( 2002; ). An approximately unbiased test of phylogenetic tree selection. . Syst Biol 51:, 492–508. [CrossRef] [PubMed]
    [Google Scholar]
  48. Shimodaira H. , Hasegawa M. . ( 1999; ). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. . Mol Biol Evol 16:, 1114–1116. [CrossRef]
    [Google Scholar]
  49. Snel B. , Huynen M. A. , Dutilh B. E. . ( 2005; ). Genome trees and the nature of genome evolution. . Annu Rev Microbiol 59:, 191–209. [CrossRef] [PubMed]
    [Google Scholar]
  50. Stephens R. S. , Myers G. , Eppinger M. , Bavoil P. M. . ( 2009; ). Divergence without difference: phylogenetics and taxonomy of Chlamydia resolved. . FEMS Immunol Med Microbiol 55:, 115–119. [CrossRef] [PubMed]
    [Google Scholar]
  51. Sukumaran J. , Holder M. T. . ( 2010; ). DendroPy: a Python library for phylogenetic computing. . Bioinformatics 26:, 1569–1571. [CrossRef] [PubMed]
    [Google Scholar]
  52. Sun Y. , Cai Y. , Huse S. M. , Knight R. , Farmerie W. G. , Wang X. , Mai V. . ( 2012; ). A large-scale benchmark study of existing algorithms for taxonomy-independent microbial community analysis. . Brief Bioinform 13:, 107–121. [CrossRef] [PubMed]
    [Google Scholar]
  53. Susko E. , Leigh J. , Doolittle W. F. , Bapteste E. . ( 2006; ). Visualizing and assessing phylogenetic congruence of core gene sets: a case study of the γ-proteobacteria. . Mol Biol Evol 23:, 1019–1030. [CrossRef] [PubMed]
    [Google Scholar]
  54. Voigt A. , Schöfl G. , Saluz H. P. . ( 2012; ). The Chlamydia psittaci genome: a comparative analysis of intracellular pathogens. . PLoS ONE 7:, e35097. [CrossRef] [PubMed]
    [Google Scholar]
  55. Wiens J. J. , Chippindale P. T. , Hillis D. M. . ( 2003; ). When are phylogenetic analyses misled by convergence? A case study in Texas cave salamanders. . Syst Biol 52:, 501–514.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000090
Loading
/content/journal/ijsem/10.1099/ijs.0.000090
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error