1887

Abstract

A methanogenic archaeon, strain HC-2, was isolated from a deep diatomaceous shale formation. The strain grew on methanol, monomethylamine, dimethylamine, trimethylamine and dimethylsulphide, but not on acetate, H/CO, formate, 2-propanol, 2-butanol or cyclopentanol. Cells were Gram-stain-negative, non-motile, and coccus-like, 0.9–1.4 µm in diameter, and occurred singly, in pairs, or as aggregates. The strain grew at 10–40 °C (optimum 35 °C), pH 5.9–7.4 (optimum pH 6.6–6.8) and in 0–0.6 M NaCl (optimum 0.1–0.2 M). The genomic DNA G+C content was 41.5 mol% and the 16S rRNA gene sequence was closely related to those of DSM 13486 (99.1 %) and DSM 3028 (98.3 %). Values for DNA–DNA hybridization with these strains were less than 30 %. The phenotypic and phylogenetic features of HC-2 indicate that it represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HC-2 ( = DSM 22503 = JCM 15540 = NBRC 102578).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000072
2015-04-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/4/1167.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000072&mimeType=html&fmt=ahah

References

  1. Boone D. R., Whitman W. B.. ( 1988; ). Proposal of minimal standards for describing new taxa of methanogenic bacteria. . Int J Syst Bacteriol 38:, 212–219. [CrossRef]
    [Google Scholar]
  2. Bryant M. P., Boone D. R.. ( 1987; ). Emended description of strain MST (DSM 800T), the type strain of Methanosarcina barkeri. . Int J Syst Bacteriol 37:, 169–170. [CrossRef]
    [Google Scholar]
  3. Doerfert S. N., Reichlen M., Iyer P., Wang M., Ferry J. G.. ( 2009; ). Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. . Int J Syst Evol Microbiol 59:, 1064–1069. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  5. Ganzert L., Schirmack J., Alawi M., Mangelsdorf K., Sand W., Hillebrand-Voiculescu A., Wagner D.. ( 2014; ). Methanosarcina spelaei sp. nov., a methanogenic archaeon isolated from a floating biofilm of a subsurface sulphurous lake. . Int J Syst Evol Microbiol 64:, 3478–3484. [CrossRef] [PubMed]
    [Google Scholar]
  6. Hales B. A., Edwards C., Ritchie D. A., Hall G., Pickup R. W., Saunders J. R.. ( 1996; ). Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. . Appl Environ Microbiol 62:, 668–675.[PubMed]
    [Google Scholar]
  7. Hamamoto M., Nakase T.. ( 1995; ). Ballistosporous yeasts found on the surface of plant materials collected in New Zealand. . Antonie van Leeuwenhoek 67:, 151–171. [CrossRef] [PubMed]
    [Google Scholar]
  8. Hippe H., Caspari D., Fiebig K., Gottschalk G.. ( 1979; ). Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. . Proc Natl Acad Sci U S A 76:, 494–498. [CrossRef] [PubMed]
    [Google Scholar]
  9. Katayama T., Yoshioka H., Mochimaru H., Meng X. Y., Muramoto Y., Usami J., Ikeda H., Kamagata Y., Sakata S.. ( 2014; ). Methanohalophilus levihalophilus sp. nov., a slightly halophilic, methylotrophic methanogen isolated from natural gas-bearing deep aquifers, and emended description of the genus Methanohalophilus. . Int J Syst Evol Microbiol 64:, 2089–2093. [CrossRef] [PubMed]
    [Google Scholar]
  10. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T.. ( 1984; ). Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. . Agric Biol Chem 48:, 3169–3172. [CrossRef]
    [Google Scholar]
  11. Kendall M. M., Liu Y., Sieprawska-Lupa M., Stetter K. O., Whitman W. B., Boone D. R.. ( 2006; ). Methanococcus aeolicus sp. nov., a mesophilic, methanogenic archaeon from shallow and deep marine sediments. . Int J Syst Evol Microbiol 56:, 1525–1529. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kotelnikova S., Macario A. J. L., Pedersen K.. ( 1998; ). Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. . Int J Syst Bacteriol 48:, 357–367. [CrossRef] [PubMed]
    [Google Scholar]
  13. Maestrojuán G. M., Boone D. R.. ( 1991; ). Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. . Int J Syst Bacteriol 41:, 267–274. [CrossRef]
    [Google Scholar]
  14. Mah R. A., Kuhn D. A.. ( 1984; ). Transfer of the type species of the genus Methanococcus to the genus Methanosarcina, naming it Methanosarcina mazei (Barker 1936) comb. nov. et emend. and conservation of the genus Methanococcus (Approved List 1980) with Methanococcus vannielii (Approved List 1980) as the type species. Request for an Opinion. . Int J Syst Bacteriol 34:, 263–265. [CrossRef]
    [Google Scholar]
  15. Marmur J.. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  16. Mikucki J. A., Liu Y., Delwiche M., Colwell F. S., Boone D. R.. ( 2003; ). Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov.. Appl Environ Microbiol 69:, 3311–3316. [CrossRef] [PubMed]
    [Google Scholar]
  17. Mochimaru H., Tamaki H., Hanada S., Imachi H., Nakamura K., Sakata S., Kamagata Y.. ( 2009; ). Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. . Int J Syst Evol Microbiol 59:, 714–718. [CrossRef] [PubMed]
    [Google Scholar]
  18. Ni S. S., Boone D. R.. ( 1991; ). Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. . Int J Syst Bacteriol 41:, 410–416. [CrossRef] [PubMed]
    [Google Scholar]
  19. Ni S., Woese C. R., Aldrich H. C., Boone D. R.. ( 1994; ). Transfer of Methanolobus siciliae to the genus Methanosarcina, naming it Methanosarcina siciliae, and emendation of the genus Methanosarcina. . Int J Syst Bacteriol 44:, 357–359. [CrossRef] [PubMed]
    [Google Scholar]
  20. Sasamoto H., Arthur R. C., Hama K.. ( 2011; ). Interpretation of undisturbed hydrogeochemical conditions in Neogene sediments of the Horonobe area, Hokkaido, Japan. . Appl Geochem 26:, 1464–1477. [CrossRef]
    [Google Scholar]
  21. Shimizu S., Akiyama M., Ishijima Y., Hama K., Kunimaru T., Naganuma T.. ( 2006; ). Molecular characterization of microbial communities in fault-bordered aquifers in the Miocene formation of northernmost Japan. . Geobiology 4:, 203–213. [CrossRef]
    [Google Scholar]
  22. Shimizu S., Upadhye R., Ishijima Y., Naganuma T.. ( 2011; ). Methanosarcina horonobensis sp. nov., a methanogenic archaeon isolated from a deep subsurface Miocene formation. . Int J Syst Evol Microbiol 61:, 2503–2507. [CrossRef] [PubMed]
    [Google Scholar]
  23. Shimizu S., Ueno A., Tamamura S., Naganuma T., Kaneko K.. ( 2013; ). Methanoculleus horonobensis sp. nov., a methanogenic archaeon isolated from a deep diatomaceous shale formation. . Int J Syst Evol Microbiol 63:, 4320–4323. [CrossRef] [PubMed]
    [Google Scholar]
  24. Simankova M. V., Parshina S. N., Tourova T. P., Kolganova T. V., Zehnder A. J. B., Nozhevnikova A. N.. ( 2001; ). Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments. . Syst Appl Microbiol 24:, 362–367. [CrossRef] [PubMed]
    [Google Scholar]
  25. Sowers K. R., Baron S. F., Ferry J. G.. ( 1984; ). Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. . Appl Environ Microbiol 47:, 971–978.[PubMed]
    [Google Scholar]
  26. Springer E., Sachs M. S., Woese C. R., Boone D. R.. ( 1995; ). Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae. . Int J Syst Bacteriol 45:, 554–559. [CrossRef] [PubMed]
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  28. Wagner D., Schirmack J., Ganzert L., Morozova D., Mangelsdorf K.. ( 2013; ). Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. . Int J Syst Evol Microbiol 63:, 2986–2991. [CrossRef] [PubMed]
    [Google Scholar]
  29. Zhilina T. N., Zavarzin G. A.. ( 1987; ). Methanosarcina vacuolata sp. nov., a vacuolated methanosarcina. . Int J Syst Bacteriol 37:, 281–283. [CrossRef]
    [Google Scholar]
  30. Zinder S. H., Mah R. A.. ( 1979; ). Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2 for methanogenesis. . Appl Environ Microbiol 38:, 996–1008.[PubMed]
    [Google Scholar]
  31. Zinder S. H., Sowers K. R., Ferry J. G.. ( 1985; ). Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. . Int J Syst Bacteriol 35:, 522–523. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000072
Loading
/content/journal/ijsem/10.1099/ijs.0.000072
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error