1887

Abstract

The methanogenic archaea are a group of micro-organisms that have developed a unique metabolic pathway for obtaining energy. There are 150 characterized species in this group; however, novel species continue to be discovered. Since methanogens are considered a crucial part of the carbon cycle in the anaerobic ecosystem, characterization of these micro-organisms is important for understanding anaerobic ecology. A methanogens database (MDB; http://metanogen.biotech.uni.wroc.pl/), including physiological and biochemical characteristics of methanogens, was constructed based on the descriptions of isolated type strains. Analysis of the data revealed that methanogens are able to grow from 0 to 122 °C. Methanogens growing at the same temperature may have very different growth rates. There is no clear correlation between the optimal growth temperature and the DNA G+C content. The following substrate preferences are observed in the database: 74.5 % of archaea species utilize H+CO, 33 % utilize methyl compounds and 8.5 % utilize acetate. Utilization of methyl compounds (mainly micro-organisms belonging to the genera and ) is seldom accompanied by an ability to utilize H+CO. Very often, data for described species are incomplete, especially substrate preferences. Additional research leading to completion of missing information and development of standards, especially for substrate utilization, would be very helpful.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000065
2015-04-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/4/1360.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000065&mimeType=html&fmt=ahah

References

  1. Alvarez J. , Armstrong E. , Gómez M. , Soto M. . ( 2008; ). Anaerobic treatment of low-strength municipal wastewater by a two-stage pilot plant under psychrophilic conditions. Bioresour Technol 99, 7051–7062.
  2. Barbu E. , Lee K. Y. , Wahl R. . ( 1956; ). Contenu en bases puriques et pyrimidiques des acides désoxyribonucléiques des bactéries. . Ann Inst Pasteur (Paris) 91:, 212–224 (in French).[PubMed]
    [Google Scholar]
  3. Batstone D. J. , Virdis B. . ( 2014; ). The role of anaerobic digestion in the emerging energy economy. . Curr Opin Biotechnol 27:, 142–149. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bentley S. D. , Parkhill J. . ( 2004; ). Comparative genomic structure of prokaryotes. . Annu Rev Genet 38:, 771–791. [CrossRef] [PubMed]
    [Google Scholar]
  5. Biavati B. , Vasta M. , Ferry J. G. . ( 1988; ). Isolation and characterization of “Methanosphaera cuniculi” sp. nov.. Appl Environ Microbiol 54:, 768–771.[PubMed]
    [Google Scholar]
  6. Boone D. R. , Whitman W. B. . ( 1988; ). Proposal of minimal standards for describing new taxa of methanogenic bacteria. . Int J Syst Bacteriol 38:, 212–219. [CrossRef]
    [Google Scholar]
  7. Burggraf S. , Fricke H. , Neuner A. , Kristjansson J. , Rouvier P. , Mandelco L. , Woese C. R. , Stetter K. O. . ( 1990; ). Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. . Syst Appl Microbiol 13:, 263–269. [CrossRef] [PubMed]
    [Google Scholar]
  8. Carbonero F. , Oakley B. B. , Purdy K. J. . ( 2010; ). Improving the isolation of anaerobes on solid media: the example of the fastidious Methanosaeta . . J Microbiol Methods 80:, 203–205. [CrossRef] [PubMed]
    [Google Scholar]
  9. Connors K. . ( 1990; ). Chemical Kinetics: The Study of Reaction Rates in Solutions. New York:: VCH Publishers;.
    [Google Scholar]
  10. Deppenmeier U. . ( 2002; ). Redox-driven proton translocation in methanogenic archaea. . Cell Mol Life Sci 59:, 1513–1533. [CrossRef] [PubMed]
    [Google Scholar]
  11. Dianou D. , Miyaki T. , Asakawa S. , Morii H. , Nagaoka K. , Oyaizu H. , Matsumoto S. . ( 2001; ). Methanoculleus chikugoensis sp. nov., a novel methanogenic archaeon isolated from paddy field soil in Japan, and DNA–DNA hybridization among Methanoculleus species. . Int J Syst Evol Microbiol 51:, 1663–1669. [CrossRef] [PubMed]
    [Google Scholar]
  12. Forster P. , Ramaswamy V. , Artaxo P. , Berntsen T. , Betts R. , Fahey D. W. , Haywood J. , Lean J. , Lowe D. C. et al. ( 2007; ). Changes in atmospheric constituents and in radiative forcing. . In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 129–234. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  13. Franzmann P. D. , Liu Y. , Balkwill D. L. , Aldrich H. C. , Conway de Macario E. , Boone D. R. . ( 1997; ). Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. . Int J Syst Bacteriol 47:, 1068–1072. [CrossRef] [PubMed]
    [Google Scholar]
  14. Garcia J. L. , Patel B. K. , Ollivier B. . ( 2000; ). Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea . . Anaerobe 6:, 205–226. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hildebrand F. , Meyer A. , Eyre-Walker A. . ( 2010; ). Evidence of selection upon genomic GC-content in bacteria. . PLoS Genet 6:, e1001107. [CrossRef] [PubMed]
    [Google Scholar]
  16. Houweling S. , van der Werf G. R. , Klein Goldewijk K. , Röckmann T. , Aben I. . ( 2008; ). Early anthropogenic CH4 emissions and the variation of CH4 and 13CH4 over the last millennium. . Global Biogeochem Cycles 22:, GB1002. [CrossRef]
    [Google Scholar]
  17. Hurst L. D. , Merchant A. R. . ( 2001; ). High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes. . Proc Biol Sci 268:, 493–497. [CrossRef] [PubMed]
    [Google Scholar]
  18. Imachi H. , Sakai S. , Sekiguchi Y. , Hanada S. , Kamagata Y. , Ohashi A. , Harada H. . ( 2008; ). Methanolinea tarda gen. nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge. . Int J Syst Evol Microbiol 58:, 294–301. [CrossRef] [PubMed]
    [Google Scholar]
  19. Imoto S. , Namioka S. . ( 1978; ). VFA production in the pig large intestine. . J Anim Sci 47:, 467–478.[PubMed]
    [Google Scholar]
  20. Janssen P. H. . ( 2003; ). Selective enrichment and purification of cultures of Methanosaeta spp.. J Microbiol Methods 52:, 239–244. [CrossRef] [PubMed]
    [Google Scholar]
  21. Jeanthon C. , L’Haridon S. , Reysenbach A. L. , Corre E. , Vernet M. , Messner P. , Sleytr U. B. , Prieur D. . ( 1999; ). Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov.. Int J Syst Bacteriol 49:, 583–589. [CrossRef] [PubMed]
    [Google Scholar]
  22. Jetten M. , Stams A. J. M. , Zehnder A. J. B. . ( 1992; ). Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp.. FEMS Microbiol Lett 88:, 181–197. [CrossRef]
    [Google Scholar]
  23. Jeyanathan J. , Kirs M. , Ronimus R. S. , Hoskin S. O. , Janssen P. H. . ( 2011; ). Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets. . FEMS Microbiol Ecol 76:, 311–326. [CrossRef] [PubMed]
    [Google Scholar]
  24. Jiang B. , Parshina S. N. , van Doesburg W. , Lomans B. P. , Stams A. J. . ( 2005; ). Methanomethylovorans thermophila sp. nov., a thermophilic, methylotrophic methanogen from an anaerobic reactor fed with methanol. . Int J Syst Evol Microbiol 55:, 2465–2470. [CrossRef] [PubMed]
    [Google Scholar]
  25. Jones W. J. , Leigh J. A. , Mayer F. , Woese C. R. , Wolfe R. S. . ( 1983; ). Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. . Arch Microbiol 136:, 254–261. [CrossRef]
    [Google Scholar]
  26. Joulian C. , Patel B. K. , Ollivier B. , Garcia J. L. , Roger P. A. . ( 2000; ). Methanobacterium oryzae sp. nov., a novel methanogenic rod isolated from a Philippines ricefield. . Int J Syst Evol Microbiol 50:, 525–528. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kotelnikova S. V. , Obraztsova A. Y. , Gongadze G. M. , Laurinavichius K. S. . ( 1993; ). Methanobacterium thermoflexum sp. nov. and Methanobacterium defluvii sp. nov., thermophilic rod-shaped methanogens isolated from anaerobic digestor sludge. . Syst Appl Microbiol 16:, 427–435. [CrossRef]
    [Google Scholar]
  28. Kotelnikova S. , Macario A. J. , Pedersen K. . ( 1998; ). Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. . Int J Syst Bacteriol 48:, 357–367. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kurr M. , Huber R. , König H. , Jannasch H. W. , Fricke H. , Trincone A. , Kristjansson J. K. , Stetter K. O. . ( 1991; ). Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 °C. . Arch Microbiol 156:, 239–247. [CrossRef]
    [Google Scholar]
  30. Leadbetter J. R. , Breznak J. A. . ( 1996; ). Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes . . Appl Environ Microbiol 62:, 3620–3631.[PubMed]
    [Google Scholar]
  31. Lindeboom R. E. F. , Weijma J. , van Lier J. B. . ( 2012; ). High-calorific biogas production by selective CO2 retention at autogenerated biogas pressures up to 20 bar. . Environ Sci Technol 46:, 1895–1902. [CrossRef] [PubMed]
    [Google Scholar]
  32. Liu Y. , Whitman W. B. . ( 2008; ). Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. . Ann N Y Acad Sci 1125:, 171–189. [CrossRef] [PubMed]
    [Google Scholar]
  33. Ma K. , Liu X. , Dong X. . ( 2006; ). Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor. . Int J Syst Evol Microbiol 56:, 127–131. [CrossRef] [PubMed]
    [Google Scholar]
  34. Madigan M. , Martinko J. , Stahl D. , Clark D. . ( 2012; ). Brock Biology of Microorganisms, , 13th edn.. San Francisco:: Pearson Education;.
    [Google Scholar]
  35. Maestrojuan G. M. , Boone D. R. . ( 1991; ). Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T . . Int J Syst Bacteriol 41:, 267–274. [CrossRef]
    [Google Scholar]
  36. Mambrini M. , Peyraud J. L. . ( 1997; ). Retention time of feed particles and liquids in the stomachs and intestines of dairy cows. Direct measurement and calculations based on faecal collection. . Reprod Nutr Dev 37:, 427–442. [CrossRef] [PubMed]
    [Google Scholar]
  37. Meslé M. , Dromart G. , Oger P. . ( 2013; ). Microbial methanogenesis in subsurface oil and coal. . Res Microbiol 164:, 959–972. [CrossRef] [PubMed]
    [Google Scholar]
  38. Mihajlovski A. , Doré J. , Levenez F. , Alric M. , Brugère J.-F. . ( 2010; ). Molecular evaluation of the human gut methanogenic archaeal microbiota reveals an age-associated increase of the diversity. . Environ Microbiol Rep 2:, 272–280. [CrossRef] [PubMed]
    [Google Scholar]
  39. Miller T. L. , Wolin M. J. . ( 1974; ). A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. . Appl Microbiol 27:, 985–987.[PubMed]
    [Google Scholar]
  40. Miller J. F. , Shah N. N. , Nelson C. M. , Ludlow J. M. , Clark D. S. . ( 1988; ). Pressure and temperature effects on growth and methane production of the extreme thermophile Methanococcus jannaschii . . Appl Environ Microbiol 54:, 3039–3042.[PubMed]
    [Google Scholar]
  41. Mori K. , Iino T. , Suzuki K. , Yamaguchi K. , Kamagata Y. . ( 2012; ). Aceticlastic and NaCl-requiring methanogen “Methanosaeta pelagica” sp. nov., isolated from marine tidal flat sediment. . Appl Environ Microbiol 78:, 3416–3423. [CrossRef] [PubMed]
    [Google Scholar]
  42. Murray P. A. , Zinder S. H. . ( 1985; ). Nutritional requirements of Methanosarcina sp. strain TM-1. . Appl Environ Microbiol 50:, 49–55.[PubMed]
    [Google Scholar]
  43. Musto H. , Naya H. , Zavala A. , Romero H. , Alvarez-Valín F. , Bernardi G. . ( 2006; ). Genomic GC level, optimal growth temperature, and genome size in prokaryotes. . Biochem Biophys Res Commun 347:, 1–3. [CrossRef] [PubMed]
    [Google Scholar]
  44. Nakabachi A. , Yamashita A. , Toh H. , Ishikawa H. , Dunbar H. E. , Moran N. A. , Hattori M. . ( 2006; ). The 160-kilobase genome of the bacterial endosymbiont Carsonella . . Science 314:, 267. [CrossRef] [PubMed]
    [Google Scholar]
  45. Ni S. S. , Boone D. R. . ( 1991; ). Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae . . Int J Syst Bacteriol 41:, 410–416. [CrossRef] [PubMed]
    [Google Scholar]
  46. Nielsen H. , Uellendahl H. , Ahring B. . ( 2007; ). Regulation and optimization of the biogas process: propionate as a key parameter. . Biomass Bioenergy 31:, 820–830. [CrossRef]
    [Google Scholar]
  47. Patel G. B. , Sprott G. D. . ( 1990; ). Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov.. Int J Syst Bacteriol 40:, 79–82. [CrossRef]
    [Google Scholar]
  48. Patra A. K. . ( 2013; ). The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: a meta-analysis. . Livest Sci 155:, 244–254. [CrossRef]
    [Google Scholar]
  49. Picard A. , Daniel I. , Montagnac G. , Oger P. . ( 2007; ). In situ monitoring by quantitative Raman spectroscopy of alcoholic fermentation by Saccharomyces cerevisiae under high pressure. . Extremophiles 11:, 445–452. [CrossRef] [PubMed]
    [Google Scholar]
  50. Romesser J. A. , Wolfe R. S. , Mayer F. , Spiess E. , Walther-Mauruschat A. . ( 1979; ). Methanogenium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov.. Arch Microbiol 121:, 147–153. [CrossRef]
    [Google Scholar]
  51. Sakai S. , Imachi H. , Sekiguchi Y. , Tseng I.-C. , Ohashi A. , Harada H. , Kamagata Y. . ( 2009; ). Cultivation of methanogens under low-hydrogen conditions by using the coculture method. . Appl Environ Microbiol 75:, 4892–4896. [CrossRef] [PubMed]
    [Google Scholar]
  52. Sakai S. , Conrad R. , Liesack W. , Imachi H. . ( 2010; ). Methanocella arvoryzae sp. nov., a hydrogenotrophic methanogen isolated from rice field soil. . Int J Syst Evol Microbiol 60:, 2918–2923. [CrossRef] [PubMed]
    [Google Scholar]
  53. Shimizu S. , Upadhye R. , Ishijima Y. , Naganuma T. . ( 2011; ). Methanosarcina horonobensis sp. nov., a methanogenic archaeon isolated from a deep subsurface Miocene formation. . Int J Syst Evol Microbiol 61:, 2503–2507.[PubMed] [CrossRef]
    [Google Scholar]
  54. Shimizu S. , Ueno A. , Tamamura S. , Naganuma T. , Kaneko K. . ( 2013; ). Methanoculleus horonobensis sp. nov., a methanogenic archaeon isolated from a deep diatomaceous shale formation. . Int J Syst Evol Microbiol 63:, 4320–4323. [CrossRef] [PubMed]
    [Google Scholar]
  55. Smith P. H. , Hungate R. E. . ( 1958; ). Isolation and characterization of Methanobacterium ruminantium n. sp.. J Bacteriol 75:, 713–718.[PubMed]
    [Google Scholar]
  56. Smith A. L. , Stadler L. B. , Love N. G. , Skerlos S. J. , Raskin L. . ( 2012; ). Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: a critical review. . Bioresour Technol 122:, 149–159. [CrossRef] [PubMed]
    [Google Scholar]
  57. Sowers K. R. , Baron S. F. , Ferry J. G. . ( 1984; ). Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. . Appl Environ Microbiol 47:, 971–978.[PubMed]
    [Google Scholar]
  58. Sundset M. A. , Edwards J. E. , Cheng Y. F. , Senosiain R. S. , Fraile M. N. , Northwood K. S. , Praesteng K. E. , Glad T. , Mathiesen S. D. , Wright A.-D. G. . ( 2009; ). Rumen microbial diversity in Svalbard reindeer, with particular emphasis on methanogenic archaea. . FEMS Microbiol Ecol 70:, 553–562. [CrossRef] [PubMed]
    [Google Scholar]
  59. Tivey M. K. . ( 2007; ). Generation of seafloor hydrothermal vent fluids and associated mineral deposits. . Oceanography (Wash DC) 20:, 50–65. [CrossRef]
    [Google Scholar]
  60. Verslyppe B. , Kottmann R. , De Smet W. , De Baets B. , De Vos P. , Dawyndt P. . ( 2010; ). Microbiological Common Language (MCL): a standard for electronic information exchange in the Microbial Commons. . Res Microbiol 161:, 439–445. [CrossRef] [PubMed]
    [Google Scholar]
  61. Wagner D. , Schirmack J. , Ganzert L. , Morozova D. , Mangelsdorf K. . ( 2013; ). Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. . Int J Syst Evol Microbiol 63:, 2986–2991. [CrossRef] [PubMed]
    [Google Scholar]
  62. Werner J. J. , Knights D. , Garcia M. L. , Scalfone N. B. , Smith S. , Yarasheski K. , Cummings T. A. , Beers A. R. , Knight R. , Angenent L. T. . ( 2011; ). Bacterial community structures are unique and resilient in full-scale bioenergy systems. . Proc Natl Acad Sci U S A 108:, 4158–4163. [CrossRef] [PubMed]
    [Google Scholar]
  63. Worakit S. , Boone D. R. , Mah R. A. , Abdel-Samie M. E. , El-Halwagi M. M. . ( 1986; ). Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values. . Int J Syst Bacteriol 36:, 380–382. [CrossRef]
    [Google Scholar]
  64. Xafenias N. , Mapelli V. . ( 2014; ). Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production. . Int J Hydrogen Energy 39:, 21864–21875. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000065
Loading
/content/journal/ijsem/10.1099/ijs.0.000065
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error