1887

Abstract

A novel bacterial strain, NGM72.4, was isolated from a hot spring in the Ngatamariki geothermal field, New Zealand. Phylogenetic analysis based on 16S rRNA gene sequences grouped it into the phylum and class level group 3 (also known as OPB35 soil group). NGM72.4 stained Gram-negative, and was catalase- and oxidase-positive. Cells were small cocci, 0.5–0.8 µm in diameter, which were motile by means of single flagella. Transmission electron micrograph (TEM) imaging showed an unusual pirellulosome-like intracytoplasmic membrane. The peptidoglycan content was very small with only trace levels of diaminopimelic acid detected. No peptidoglycan structure was visible in TEM imaging. The predominant isoprenoid quinone was MK-7 (92 %). The major fatty acids (>15 %) were C, anteiso-C, iso-C and anteiso-C. Major phospholipids were phosphatidylethanolamine (PE), phosphatidylmonomethylethanolamine (PMME) and cardiolipin (CL), and a novel analogous series of phospholipids where diacylglycerol was replaced with diacylserinol (sPE, sPMME, sCL). The DNA G+C content was 65.6 mol%. Cells displayed an oxidative chemoheterotrophic metabolism. NGM72.4 is a strictly aerobic thermophile (growth optimum 60–65 °C), has a slightly alkaliphilic pH growth optimum (optimum pH 8.1–8.4) and has a NaCl tolerance of up to 8 g l. Colonies were small, circular and pigmented pale pink. The distinct phylogenetic position and phenotypic traits of strain NGM72.4 distinguish it from all other described species of the phylum and, therefore, it is considered to represent a novel species in a new genus for which we propose the name gen. nov., sp. nov. The type strain is NGM72.4 ( = ICMP 20182 = DSM 27329).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000063
2015-04-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/4/1114.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000063&mimeType=html&fmt=ahah

References

  1. Alain K., Holler T., Musat F., Elvert M., Treude T., Krüger M.. ( 2006; ). Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. . Environ Microbiol 8:, 574–590. [CrossRef] [PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bergmann G. T., Bates S. T., Eilers K. G., Lauber C. L., Caporaso J. G., Walters W. A., Knight R., Fierer N.. ( 2011; ). The under-recognized dominance of Verrucomicrobia in soil bacterial communities. . Soil Biol Biochem 43:, 1450–1455. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  5. Dunfield P. F., Yuryev A., Senin P., Smirnova A. V., Stott M. B., Hou S. B., Ly B., Saw J. H., Zhou Z. M. et al. ( 2007; ). Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. . Nature 450:, 879–882. [CrossRef] [PubMed]
    [Google Scholar]
  6. Fautz E., Reichenbach H.. ( 1980; ). A simple test for flexirubin-type pigments. . FEMS Microbiol Lett 8:, 87–91. [CrossRef]
    [Google Scholar]
  7. Ferreira A. M., Wait R., Nobre M. F., da Costa M. S.. ( 1999; ). Characterization of glycolipids from Meiothermus spp.. Microbiology 145:, 1191–1199. [CrossRef] [PubMed]
    [Google Scholar]
  8. Hedlund B. P.. ( 2010; ). Phylum XXIII. Verrucomicrobia phyl. nov.. In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 795–841. Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B... New York:: Springer;. [CrossRef]
    [Google Scholar]
  9. Heimbrook M. E., Wang W. L., Campbell G.. ( 1989; ). Staining bacterial flagella easily. . J Clin Microbiol 27:, 2612–2615.[PubMed]
    [Google Scholar]
  10. Hirayama H., Sunamura M., Takai K., Nunoura T., Noguchi T., Oida H., Furushima Y., Yamamoto H., Oomori T., Horikoshi K.. ( 2007; ). Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan. . Appl Environ Microbiol 73:, 7642–7656. [CrossRef] [PubMed]
    [Google Scholar]
  11. Huang L. N., Zhu S., Zhou H., Qu L. H.. ( 2005; ). Molecular phylogenetic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill. . FEMS Microbiol Lett 242:, 297–303. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hugenholtz P., Goebel B. M., Pace N. R.. ( 1998; a). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. . J Bacteriol 180:, 4765–4774.[PubMed]
    [Google Scholar]
  13. Hugenholtz P., Pitulle C., Hershberger K. L., Pace N. R.. ( 1998; b). Novel division level bacterial diversity in a Yellowstone hot spring. . J Bacteriol 180:, 366–376.[PubMed]
    [Google Scholar]
  14. Humayoun S. B., Bano N., Hollibaugh J. T.. ( 2003; ). Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. . Appl Environ Microbiol 69:, 1030–1042. [CrossRef] [PubMed]
    [Google Scholar]
  15. Islam T., Jensen S., Reigstad L. J., Larsen O., Birkeland N. K.. ( 2008; ). Methane oxidation at 55 °C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. . Proc Natl Acad Sci U S A 105:, 300–304. [CrossRef] [PubMed]
    [Google Scholar]
  16. Jukes T. H., Cantor C. R.. ( 1969; ). Evolution of Protein Molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  17. Kanokratana P., Chanapan S., Pootanakit K., Eurwilaichitr L.. ( 2004; ). Diversity and abundance of Bacteria and Archaea in the Bor Khlueng hot spring in Thailand. . J Basic Microbiol 44:, 430–444. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kant R., van Passel M. W., Sangwan P., Palva A., Lucas S., Copeland A., Lapidus A., Glavina del Rio T., Dalin E. et al. ( 2011; ). Genome sequence of “Pedosphaera parvula” Ellin514, an aerobic verrucomicrobial isolate from pasture soil. . J Bacteriol 193:, 2900–2901. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lee K. C., Webb R. I., Janssen P. H., Sangwan P., Romeo T., Staley J. T., Fuerst J. A.. ( 2009; ). Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes. . BMC Microbiol 9:, 5. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lee K. C., Dunfield P. F., Morgan X. C., Crowe M. A., Houghton K. M., Vyssotski M., Ryan J. L., Lagutin K., McDonald I. R., Stott M. B.. ( 2011; ). Chthonomonas calidirosea gen. nov., sp. nov., an aerobic, pigmented, thermophilic micro-organism of a novel bacterial class, Chthonomonadetes classis nov., of the newly described phylum Armatimonadetes originally designated candidate division OP10. . Int J Syst Evol Microbiol 61:, 2482–2490. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lindström E. S., Kamst-Van Agterveld M. P., Zwart G.. ( 2005; ). Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. . Appl Environ Microbiol 71:, 8201–8206. [CrossRef] [PubMed]
    [Google Scholar]
  22. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  23. MacKenzie A., Vyssotski M., Nekrasov E.. ( 2009; ). Quantative analysis of dairy phospholipids by 31P NMR. . J Am Oil Chem Soc 86:, 757–763. [CrossRef]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B.. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  25. Op den Camp H. J., Islam T., Stott M. B., Harhangi H. R., Hynes A., Schouten S., Jetten M. S., Birkeland N. K., Pol A., Dunfield P. F.. ( 2009; ). Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia.. Environ Microbiol Rep 1:, 293–306. [CrossRef] [PubMed]
    [Google Scholar]
  26. Petroni G., Spring S., Schleifer K. H., Verni F., Rosati G.. ( 2000; ). Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. . Proc Natl Acad Sci U S A 97:, 1813–1817. [CrossRef] [PubMed]
    [Google Scholar]
  27. Pol A., Heijmans K., Harhangi H. R., Tedesco D., Jetten M. S., Op den Camp H. J.. ( 2007; ). Methanotrophy below pH 1 by a new Verrucomicrobia species. . Nature 450:, 874–878. [CrossRef] [PubMed]
    [Google Scholar]
  28. Polymenakou P. N., Bertilsson S., Tselepides A., Stephanou E. G.. ( 2005; ). Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries. . Microb Ecol 50:, 447–462. [CrossRef] [PubMed]
    [Google Scholar]
  29. Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., Larget B., Liu L., Suchard M. A., Huelsenbeck J. P.. ( 2012; ). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. . Syst Biol 61:, 539–542. [CrossRef] [PubMed]
    [Google Scholar]
  30. Sangwan P., Kovac S., Davis K. E., Sait M., Janssen P. H.. ( 2005; ). Detection and cultivation of soil verrucomicrobia. . Appl Environ Microbiol 71:, 8402–8410. [CrossRef] [PubMed]
    [Google Scholar]
  31. Schumann P.. ( 2011; ). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  32. Shieh W. Y., Jean W. D.. ( 1998; ). Alterococcus agarolyticus, gen.nov., sp.nov., a halophilic thermophilic bacterium capable of agar degradation. . Can J Microbiol 44:, 637–645. [CrossRef] [PubMed]
    [Google Scholar]
  33. Speth D. R., van Teeseling M. C., Jetten M. S.. ( 2012; ). Genomic analysis indicates the presence of an asymmetric bilayer outer membrane in Planctomycetes and Verrucomicrobia. . Front Microbiol 3:, 304. [CrossRef] [PubMed]
    [Google Scholar]
  34. Tindall B. J.. ( 1990; ). Lipid-composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  35. Wagner M., Horn M.. ( 2006; ). The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. . Curr Opin Biotechnol 17:, 241–249. [CrossRef] [PubMed]
    [Google Scholar]
  36. Wang M., Ahrné S., Jeppsson B., Molin G.. ( 2005; ). Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. . FEMS Microbiol Ecol 54:, 219–231. [CrossRef] [PubMed]
    [Google Scholar]
  37. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  38. Wertz J. T., Kim E., Breznak J. A., Schmidt T. M., Rodrigues J. L.. ( 2012; ). Genomic and physiological characterization of the Verrucomicrobia isolate Diplosphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixation genes. . Appl Environ Microbiol 78:, 1544–1555. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000063
Loading
/content/journal/ijsem/10.1099/ijs.0.000063
Loading

Data & Media loading...

Supplements

Supp Data

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error