1887

Abstract

A novel Gram-staining-positive, non-endospore-forming, aerobic bacterium, designated strain SJ5-4, was isolated from seau-jeot, a traditional food that is made by fermentation of highly salted [approximately 25 % (w/v)] shrimp in Korea. Cells were moderately halophilic, non-motile cocci or short rods that showed catalase- and oxidase-positive reactions. Growth of strain SJ5-4 was observed at 15–40 °C (optimum, 30 °C), at pH 6.0–9.5 (optimum, pH 6.5–7.0) and in the presence of 1–17 % (w/v) NaCl (optimum, 6 %). The major cellular fatty acids of strain SJ5-4 were anteiso-C, iso-C, anteiso-C, iso-C and C. Phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, an unidentified phospholipid, three glycolipids and an unidentified lipid were detected as the polar lipids. Strain SJ5-4 belonged to the exceptionally small group of strains within the order that show a peptidoglycan cross-linked according to the A-type but containing 2,4-diaminobutyric acid. The G+C content of the genomic DNA was 61.8 mol%. MK-7, MK-8 and MK-9 were detected as the isoprenoid quinones. Strain SJ5-4 was most closely related to members of the genus , with 16S rRNA gene sequence similarities of 93.1–94.8 %. However, phylogenetic inference based on 16S rRNA gene sequences showed that strain SJ5-4 formed a phyletic lineage distinct from members of the genus within the family . On the basis of its phenotypic and molecular features, strain SJ5-4 represents a novel genus and species of the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is SJ5-4 ( = KACC 16909 = JCM 18572 = DSM 28238).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000056
2015-03-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/1015.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000056&mimeType=html&fmt=ahah

References

  1. Bernardet J. F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  2. Choi E. J., Lee S. H., Jung J. Y., Jeon C. O.. ( 2013;). Brevibacterium jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. . Int J Syst Evol Microbiol 63:, 3430–3436. [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D., Lawson P. A., Labrenz M., Tindall B. J., Weiss N., Hirsch P.. ( 2002;). Nesterenkonia lacusekhoensis sp. nov., isolated from hypersaline Ekho Lake, East Antarctica, and emended description of the genus Nesterenkonia. . Int J Syst Evol Microbiol 52:, 1145–1150. [CrossRef][PubMed]
    [Google Scholar]
  4. Delgado O., Quillaguamán J., Bakhtiar S., Mattiasson B., Gessesse A., Hatti-Kaul R.. ( 2006;). Nesterenkonia aethiopica sp. nov., an alkaliphilic, moderate halophile isolated from an Ethiopian soda lake. . Int J Syst Evol Microbiol 56:, 1229–1232. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 2002;). phylip (phylogeny inference package), version 3.6a. . Distributed by the author. Department of Genome Sciences, University of Washington;, Seattle, WA, USA:.
  6. Fiedler F., Kandler O.. ( 1973;). [Amino acid sequence of 2,4-diaminobutyric acid-containing mureins of various coryneform bacteria and Agromyces ramosus]. . Arch Mikrobiol 89:, 51–66 (in German). [CrossRef][PubMed]
    [Google Scholar]
  7. Gomori G.. ( 1955;). Preparation of buffers for use in enzyme studies. . Methods Enzymol 1:, 138–146. [CrossRef]
    [Google Scholar]
  8. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  9. Govender L., Naidoo L., Setati M. E.. ( 2013;). Nesterenkonia suensis sp. nov., a haloalkaliphilic actinobacterium isolated from a salt pan. . Int J Syst Evol Microbiol 63:, 41–46. [CrossRef][PubMed]
    [Google Scholar]
  10. Guan L., Cho K. H., Lee J. H.. ( 2011;). Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria. . Food Microbiol 28:, 101–113. [CrossRef][PubMed]
    [Google Scholar]
  11. Isnansetyo A., Kamei Y.. ( 2003;). Pseudoalteromonas phenolica sp. nov., a novel marine bacterium that produces phenolic anti-methicillin-resistant Staphylococcus aureus substances. . Int J Syst Evol Microbiol 53:, 583–588. [CrossRef][PubMed]
    [Google Scholar]
  12. Jeon C. O., Park W., Ghiorse W. C., Madsen E. L.. ( 2004;). Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. . Int J Syst Evol Microbiol 54:, 93–97. [CrossRef][PubMed]
    [Google Scholar]
  13. Jeong S. H., Lee J. H., Jung J. Y., Lee S. H., Park M. S., Jeon C. O.. ( 2013;). Halomonas cibimaris sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. . Antonie van Leeuwenhoek 103:, 503–512. [CrossRef][PubMed]
    [Google Scholar]
  14. Jung J. Y., Lee S. H., Lee H. J., Jeon C. O.. ( 2013;). Microbial succession and metabolite changes during fermentation of saeu-jeot: traditional Korean salted seafood. . Food Microbiol 34:, 360–368. [CrossRef][PubMed]
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  16. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  17. Lányi B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  18. Lee S. H., Jung J. Y., Jeon C. O.. ( 2014;). Effects of temperature on microbial succession and metabolite change during saeu-jeot fermentation. . Food Microbiol 38:, 16–25. [CrossRef][PubMed]
    [Google Scholar]
  19. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  20. Li W. J., Chen H. H., Zhang Y. Q., Schumann P., Stackebrandt E., Xu L. H., Jiang C. L.. ( 2004;). Nesterenkonia halotolerans sp. nov. and Nesterenkonia xinjiangensis sp. nov., actinobacteria from saline soils in the west of China. . Int J Syst Evol Microbiol 54:, 837–841. [CrossRef][PubMed]
    [Google Scholar]
  21. Li W. J., Chen H. H., Kim C. J., Zhang Y. Q., Park D. J., Lee J. C., Xu L. H., Jiang C. L.. ( 2005;). Nesterenkonia sandarakina sp. nov. and Nesterenkonia lutea sp. nov., novel actinobacteria, and emended description of the genus Nesterenkonia. . Int J Syst Evol Microbiol 55:, 463–466. [CrossRef][PubMed]
    [Google Scholar]
  22. Li W. J., Zhang Y. Q., Schumann P., Liu H. Y., Yu L. Y., Zhang Y. Q., Stackebrandt E., Xu L. H., Jiang C. L.. ( 2008;). Nesterenkonia halophila sp. nov., a moderately halophilic, alkalitolerant actinobacterium isolated from a saline soil. . Int J Syst Evol Microbiol 58:, 1359–1363. [CrossRef][PubMed]
    [Google Scholar]
  23. Lu S., Park M., Ro H. S., Lee D. S., Park W., Jeon C. O.. ( 2006;). Analysis of microbial communities using culture-dependent and culture-independent approaches in an anaerobic/aerobic SBR reactor. . J Microbiol 44:, 155–161.[PubMed]
    [Google Scholar]
  24. Luo H. Y., Miao L. H., Fang C., Yang P. L., Wang Y. R., Shi P. J., Yao B., Fan Y. L.. ( 2008;). Nesterenkonia flava sp. nov., isolated from paper-mill effluent. . Int J Syst Evol Microbiol 58:, 1927–1930. [CrossRef][PubMed]
    [Google Scholar]
  25. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27:, 104–117. [CrossRef]
    [Google Scholar]
  26. Mota R. R., Márquez M. C., Arahal D. R., Mellado E., Ventosa A.. ( 1997;). Polyphasic taxonomy of Nesterenkonia halobia. . Int J Syst Bacteriol 47:, 1231–1235. [CrossRef][PubMed]
    [Google Scholar]
  27. Nawrocki E. P., Eddy S. R.. ( 2007;). Query-dependent banding (QDB) for faster RNA similarity searches. . PLoS Comput Biol 3:, e56. [CrossRef][PubMed]
    [Google Scholar]
  28. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  29. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  30. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  31. Schumann P.. ( 2011;). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  32. Schumann P., Kämpfer P., Busse H.-J., Evtushenko L. I..Subcommittee on the Taxonomy of the Suborder Micrococcineae of the International Committee on Systematics of Prokaryotes ( 2009;). Proposed minimal standards for describing new genera and species of the suborder Micrococcineae. . Int J Syst Evol Microbiol 59:, 1823–1849. [CrossRef][PubMed]
    [Google Scholar]
  33. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  34. Stackebrandt E., Koch C., Gvozdiak O., Schumann P.. ( 1995;). Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend.. Int J Syst Bacteriol 45:, 682–692. [CrossRef][PubMed]
    [Google Scholar]
  35. Stamatakis A., Ott M., Ludwig T.. ( 2005;). RAxML-OMP: an efficient program for phylogenetic inference on SMPs. . In Parallel Computing Techniques (Lecture Notes in Computer Science, vol. 3606), pp. 288–302. Edited by Malyshkin V... Berlin, Heidelberg:: Springer;. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000056
Loading
/content/journal/ijsem/10.1099/ijs.0.000056
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error