1887

Abstract

A polyphasic taxonomic study was carried out on strain EBR-4-1, which was isolated from a biofilm reactor in the Republic of Korea. The cells of the strain were Gram-stain-negative, non-spore-forming, motile and rod-shaped. Comparative 16S rRNA gene sequence studies showed a clear affiliation of this strain to the , and it was most closely related to CCUG 54519, HT4, and DSM 6462 with 16S rRNA gene sequence similarities to the type strains of these species of 98.8 %, 98.7 %, and 96.3 %, respectively. The G+C content of the genomic DNA of strain EBR-4-1 was 68.7 mol%. Phenotypic and chemotaxonomic data [Q-10 as the major ubiquinone; Cω8, C 2-OH, and summed feature 8 (Cω7 and/or Cω6) as the major fatty acids] supported the affiliation of strain EBR-4-1 to the genus . On the basis of the polyphasic evidence, it is proposed that strain EBR-4-1 should be assigned to a new species, sp. nov. The type strain is EBR-4-1 ( = KCTC 32487 = JCM 30181).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000032
2015-03-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/885.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000032&mimeType=html&fmt=ahah

References

  1. Auling G., Busse H.-J., Egli T., El-Banna T., Stackebrandt E.. ( 1993;). Description of the Gram-negative, obligately aerobic, nitrilotriacetate (NTA)-utilizing bacteria as Chelatobacter heintzii, gen. nov., sp. nov., and Chelatococcus asaccharovorans, gen. nov., sp. nov.. Syst Appl Microbiol 16:, 104–112. [CrossRef]
    [Google Scholar]
  2. Bates R. G., Bower V. E.. ( 1956;). Alkaline solutions for pH control. . Anal Chem 28:, 1322–1324. [CrossRef]
    [Google Scholar]
  3. Egli T., Weilemann H.-U., El-Banna, T, Auling G.. ( 1988;). Gram-negative, aerobic, nitrilotriacetate-utilizing bacteria from waste water and soil. . Syst Appl Microbiol 10:, 297–305. [CrossRef]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid- deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  8. Gomori G.. ( 1955;). Preparation of buffers for use in enzyme studies. . Methods Enzymol 1:, 138–146.
    [Google Scholar]
  9. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucl Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  10. Komagata K., Suzuki K.-I.. ( 1987;). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  11. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  12. Panday D., Das S. K.. ( 2010;). Chelatococcus sambhunathii sp. nov., a moderately thermophilic alphaproteobacterium isolated from hot spring sediment. . Int J Syst Evol Microbiol 60:, 861–865. [CrossRef][PubMed]
    [Google Scholar]
  13. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  14. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reverse-phased high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  15. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  16. Tarrand J. J., Gröschel D. H. M.. ( 1982;). Rapid, modified oxidase test for oxidase-variable bacterial isolates. . J Clin Microbiol 16:, 772–774.[PubMed]
    [Google Scholar]
  17. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  18. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  19. Yoon J. H., Kang S. J., Im W. T., Lee S. T., Oh T. K.. ( 2008;). Chelatococcus daeguensis sp. nov., isolated from wastewater of a textile dye works, and emended description of the genus Chelatococcus. . Int J Syst Evol Microbiol 58:,2224–2228. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000032
Loading
/content/journal/ijsem/10.1099/ijs.0.000032
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error