1887

Abstract

An aerobic and Gram-stain-negative bacterial strain, designated 9NM-14, was isolated from abandoned lead-zinc ore from Meizhou, Guangdong Province, south China. Strain 9NM-14 was motile by means of a single polar flagellum. Phylogenetic analysis, based on 16S rRNA gene sequences, showed that strain 9NM-14 was affiliated with the genus and was most closely related to RCML-52 and ZLD-29 (97.4 % and 96.3 % 16S rRNA gene sequence similarity, respectively). The DNA–DNA relatedness value between strain 9NM-14 and RCML-52 was 30.1±7.6 %. The major respiratory quinone was unbiquinone 8 (Q-8) and the major cellular fatty acids consisted of iso-Cω9 (29.1 %), iso-C (28.9 %), iso-C (9.4 %), iso-C (8.6 %), iso-C 3-OH (6.9 %) and iso-C (5.8 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, an unidentified aminolipid and five unidentified phospholipids. The genomic DNA G+C content of strain 9NM-14 was 70.7±0.1 mol%. On the basis of the data from this polyphasic taxonomic study, strain 9NM-14 should be assigned to a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 9NM-14 ( = GIMCC 1.659 = CCTCC AB 2014273 = DSM 27574).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000026
2015-03-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/833.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000026&mimeType=html&fmt=ahah

References

  1. Bowman J. P.. ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:, 1861–1868.[PubMed]
    [Google Scholar]
  2. Choi J. H., Seok J. H., Cha J. H., Cha C. J.. ( 2014;). Lysobacter panacisoli sp. nov., isolated from ginseng soil. . Int J Syst Evol Microbiol 64:, 2193–2197. [CrossRef][PubMed]
    [Google Scholar]
  3. Christensen P., Cook F. D.. ( 1978;). Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. . Int J Syst Bacteriol 28:, 367–393. [CrossRef]
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Feng G. D., Yang S. Z., Wang Y. H., Zhao G. Z., Deng M. R., Zhu H. H.. ( 2014;). Sphingomonas gimensis sp. nov., a novel Gram-negative bacterium isolated from abandoned lead-zinc ore mine. . Antonie van Leeuwenhoek 105:, 1091–1097. [CrossRef][PubMed]
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  10. Hiraishi A., Ueda Y., Ishihara J., Mori T.. ( 1996;). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. . J Gen Appl Microbiol 42:, 457–469. [CrossRef]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  12. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  13. Liu M., Liu Y., Wang Y., Luo X., Dai J., Fang C.. ( 2011;). Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from a gamma-irradiated sand soil sample. . Int J Syst Evol Microbiol 61:, 433–437. [CrossRef][PubMed]
    [Google Scholar]
  14. Luo G., Shi Z., Wang G.. ( 2012;). Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. . Int J Syst Evol Microbiol 62:, 1659–1665. [CrossRef][PubMed]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  16. Romanenko L. A., Uchino M., Tanaka N., Frolova G. M., Mikhailov V. V.. ( 2008;). Lysobacter spongiicola sp. nov., isolated from a deep-sea sponge. . Int J Syst Evol Microbiol 58:, 370–374. [CrossRef][PubMed]
    [Google Scholar]
  17. Saddler G. S., Bradbury J. F.. ( 2005;). Family I. Xanthomonadaceae fam. nov.. In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, pp. 63 (The Proteobacteria), part B (The Gammaproteobacteria). Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York:: Springer;. [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  19. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. , MIDI Technical Note 101. Newark, DE: MIDI Inc.
    [Google Scholar]
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  21. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 330––393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  22. Wang Y., Dai J., Zhang L., Luo X. S., Li Y. W., Chen G., Tang Y. L., Meng Y., Fang C.. ( 2009;). Lysobacter ximonensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 59:, 786–789. [CrossRef][PubMed]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  24. Wei D. Q., Yu T. T., Yao J. C., Zhou E. M., Song Z. Q., Yin Y. R., Ming H., Tang S. K., Li W. J.. ( 2012;). Lysobacter thermophilus sp. nov., isolated from a geothermal soil sample in Tengchong, south-west China. . Antonie van Leeuwenhoek 102:, 643–651. [CrossRef][PubMed]
    [Google Scholar]
  25. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  26. Yu T-T., Zhou E-M., Yin Y-R., Yao J-C., Ming H., Dong L., Li S., Nie G-X., Li W-J.. ( 2013;). Vulcaniibacterium tengchongense gen. nov., sp. nov. isolated from a geothermally heated soil sample, and reclassification of Lysobacter thermophilus Wei et al. 2012 as Vulcaniibacterium thermophilum comb. nov.. Antonie van Leeuwenhoek 104:, 369–376. [CrossRef][PubMed]
    [Google Scholar]
  27. Zhang L., Bai J., Wang Y., Wu G. L., Dai J., Fang C. X.. ( 2011;). Lysobacter korlensis sp. nov. and Lysobacter bugurensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 61:, 2259–2265. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000026
Loading
/content/journal/ijsem/10.1099/ijs.0.000026
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error