1887

Abstract

A Gram-reaction-negative, flexirubin-type-pigmented, rod-shaped, aerobic, non-motile bacterium, designated strain Z12, was isolated from a subsurface sediment sample. In a phylogenetic tree based on 16S rRNA gene sequences, strain Z12 formed a distinct clade with the members of the genus (<96.7 % sequence similarity). The G+C content of genomic DNA was 45.4 %. The major fatty acids of strain Z12 were iso-C, Cω6 and/or Cω7 (summed feature 3) and anteiso-C B and/or iso-C I (summed feature 4). The major respiratory quinone was MK-7 and the major polar lipid was phosphatidylethanolamine. On the basis of phenotypic, phylogenetic and genotypic features, strain Z12 is considered to represent a novel species, for which the name sp. nov., is proposed. The type strain is Z12 ( = JCM 30073 = CGMCC 1.12895).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000025
2015-03-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/827.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000025&mimeType=html&fmt=ahah

References

  1. Baik K. S., Kim M. S., Kim E. M., Kim H. R., Seong C. N.. ( 2007;). Dyadobacter koreensis sp. nov., isolated from fresh water. . Int J Syst Evol Microbiol 57:, 1227–1231. [CrossRef][PubMed]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A.. (editors) ( 1993;). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  3. Bernardet J. F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  4. Chaturvedi P., Reddy G. S., Shivaji S.. ( 2005;). Dyadobacter hamtensis sp. nov., from Hamta glacier, located in the Himalayas, India. . Int J Syst Evol Microbiol 55:, 2113–2117. [CrossRef][PubMed]
    [Google Scholar]
  5. Chelius M. K., Triplett E. W.. ( 2000;). Dyadobacter fermentans gen. nov., sp. nov., a novel gram-negative bacterium isolated from surface-sterilized Zea mays stems. . Int J Syst Evol Microbiol 50:, 751–758. [CrossRef][PubMed]
    [Google Scholar]
  6. Chen L., Jiang F., Xiao M., Dai J., Kan W., Fang C., Peng F.. ( 2013;). Dyadobacter arcticus sp. nov., isolated from Arctic soil. . Int J Syst Evol Microbiol 63:, 1616–1620. [CrossRef][PubMed]
    [Google Scholar]
  7. Chun J., Kang J. Y., Joung Y., Kim H., Joh K., Jahng K. Y.. ( 2013;). Dyadobacter jejuensis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 63:, 1788–1792. [CrossRef][PubMed]
    [Google Scholar]
  8. da Costa M. S., Albuquerque L., Nobre M., Wait R.. ( 2011a;). The extraction and identification of respiratory lipoquinones of prokaryotes and their use in taxonomy. . Methods Microbiol 38:, 197–206. [CrossRef]
    [Google Scholar]
  9. da Costa M. S., Albuquerque L., Nobre M., Wait R.. ( 2011b;). The identification of polar lipids in prokaryotes. . Methods Microbiol 38:, 165–181. [CrossRef]
    [Google Scholar]
  10. Dong Z., Guo X., Zhang X., Qiu F., Sun L., Gong H., Zhang F.. ( 2007;). Dyadobacter beijingensis sp. nov., isolated from the rhizosphere of turf grasses in China. . Int J Syst Evol Microbiol 57:, 862–865. [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  12. Han L., Wu S. J., Qin C. Y., Zhu Y. H., Lu Z. Q., Xie B., Lv J.. ( 2014;). Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter. . Antonie van Leeuwenhoek 105:, 971–978. [CrossRef][PubMed]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  15. Kishino H., Hasegawa M.. ( 1989;). Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. . J Mol Evol 29:, 170–179. [CrossRef][PubMed]
    [Google Scholar]
  16. Lee M., Woo S. G., Park J., Yoo S. A.. ( 2010;). Dyadobacter soli sp. nov., a starch-degrading bacterium isolated from farm soil. . Int J Syst Evol Microbiol 60:, 2577–2582. [CrossRef][PubMed]
    [Google Scholar]
  17. Liu Q. M., Im W. T., Lee M., Yang D. C., Lee S. T.. ( 2006;). Dyadobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 56:, 1939–1944. [CrossRef][PubMed]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high–performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  19. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  20. Murray R., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  21. Reasoner D. J., Geldreich E. E.. ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. . Appl Environ Microbiol 49:, 1–7.[PubMed]
    [Google Scholar]
  22. Reddy G. S., Garcia-Pichel F.. ( 2005;). Dyadobacter crusticola sp. nov., from biological soil crusts in the Colorado Plateau, USA, and an emended description of the genus Dyadobacter Chelius and Triplett 2000. . Int J Syst Evol Microbiol 55:, 1295–1299. [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Netwark, DE:: MIDI Inc;.
    [Google Scholar]
  25. Shen L., Liu Y., Yao T., Wang N., Xu B., Jiao N., Liu H., Zhou Y., Liu X., Wang Y.. ( 2013;). Dyadobacter tibetensis sp. nov., isolated from glacial ice core. . Int J Syst Evol Microbiol 63:, 3636–3639. [CrossRef][PubMed]
    [Google Scholar]
  26. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  28. Tang Y., Dai J., Zhang L., Mo Z., Wang Y., Li Y., Ji S., Fang C., Zheng C.. ( 2009;). Dyadobacter alkalitolerans sp. nov., isolated from desert sand. . Int J Syst Evol Microbiol 59:, 60–64. [CrossRef][PubMed]
    [Google Scholar]
  29. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  30. Weeks O. B.. ( 1981;). Preliminary studies of the pigments of Flavobacterium breve NCTC 11099 and Flavobacterium odoratum NCTC 11036. . In The Flavobacterium–Cytophaga Group, pp. 108–114. Edited by Reichenbach H., Weeks O. B... Weinheim:: Gesellschaft für Biotechnologische Forshung;.
    [Google Scholar]
  31. Zhang D. C., Liu H. C., Xin Y. H., Zhou Y. G., Schinner F., Margesin R.. ( 2010;). Dyadobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from soil. . Int J Syst Evol Microbiol 60:, 1640–1643. [CrossRef][PubMed]
    [Google Scholar]
  32. Zhang R. G., Tan X., Zhao X. M., Deng J., Lv J.. ( 2014;). Moheibacter sediminis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from sediment, and emended descriptions of Empedobacter brevis, Wautersiella falsenii and Weeksella virosa. . Int J Syst Evol Microbiol 64:, 1481–1487. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000025
Loading
/content/journal/ijsem/10.1099/ijs.0.000025
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error