1887

Abstract

A cream-coloured, Gram-stain-negative, aerobic, non-motile, rod- to irregular shaped bacterium, strain 119/4, was isolated from a choana swab of a white stork nestling on sheep blood agar. 16S rRNA gene sequence analysis and subsequent comparisons showed that it was a member of the family , showing 94.9 % similarity to the type strain of and 94.6 % similarity to that of , but also similarly low sequence similarity to the type strains of (94.8 %), (94.6 %) and (94.6 %). Reconstruction of phylogenetic trees showed that strain 119/4 clustered close to species of the genus . The quinone system contained high amounts of ubiquinone Q-10 with traces of Q-8, Q-9 and Q-11, and the fatty acid profile consisted mainly of Cω7, Cω7/iso-C 2-OH and C 3-OH. The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phoshatidylglycerol and phosphatidylcholine. Major polyamines were putrescine and spermidine. On the basis of 16S rRNA gene sequence analysis and chemotaxonomic and physiological data, strain 119/4 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 119/4 ( = CIP 110795 = LMG 28215 = CCM 8510).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.000012
2015-03-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/3/778.html?itemId=/content/journal/ijsem/10.1099/ijs.0.000012&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J.. ( 1996;). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol 47:, 39–52. [CrossRef]
    [Google Scholar]
  2. Anil Kumar P., Srinivas T. N. R., Sasikala Ch., Ramana Ch. V.. ( 2007;). Rhodobacter changlensis sp. nov., a psychrotolerant, phototrophic alphaproteobacterium from the Himalayas of India. . Int J Syst Evol Microbiol 57:, 2568–2571. [CrossRef][PubMed]
    [Google Scholar]
  3. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  4. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  5. Busse H. J., Bunka S., Hensel A., Lubitz W.. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  6. Chen W. M., Cho N. T., Huang W. C., Young C. C., Sheu S. Y.. ( 2013;). Description of Gemmobacter fontiphilus sp. nov., isolated from a freshwater spring, reclassification of Catellibacterium nectariphilum as Gemmobacter nectariphilus comb. nov., Catellibacterium changlense as Gemmobacter changlensis comb. nov., Catellibacterium aquatile as Gemmobacter aquaticus nom. nov., Catellibacterium caeni as Gemmobacter caeni comb. nov., Catellibacterium nanjingense as Gemmobacter nanjingensis comb. nov., and emended description of the genus Gemmobacter and of Gemmobacter aquatilis. . Int J Syst Evol Microbiol 63:, 470–478. [CrossRef][PubMed]
    [Google Scholar]
  7. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  8. Glaeser S. P., Galatis H., Martin K., Kämpfer P.. ( 2013;). Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbana. . Int J Syst Evol Microbiol 63:, 3487–3493. [CrossRef][PubMed]
    [Google Scholar]
  9. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  10. Hamana K., Matsuzaki S.. ( 1990;). Polyamines and their biosynthetic activities in nonphytopathogenic marine agrobacteria. . Can J Microbiol 36:, 567–572. [CrossRef]
    [Google Scholar]
  11. Hamana K., Takeuchi M.. ( 1998;). Polyamine profiles as chemotaxonomic marker within alpha, beta, gamma, delta and epsilon subclasses of class Proteobacteria: distribution of 2-hydroxyputrescine and homospermidine. . Microbiol Cult Collect 14:, 1–14.
    [Google Scholar]
  12. Hamana K., Sakamoto A., Tachiyanagi S., Terauchi E., Takeuchi M.. ( 2003;). Polyamine profiles of some members of the alpha subclass of the class Proteobacteria: polyamine analysis of twenty recently described genera. . Microbiol Cult Collect 19:, 13–21.
    [Google Scholar]
  13. Hamana K., Sato W., Gouma K., Yu J., Ino Y., Umemura Y., Mochizuki C., Takatsuka K., Kigure Y.. & other authors ( 2006;). Cellular polyamine catalogues of the five classes of the phylum Proteobacteria: distributions of homospermidine within the class Alphaproteobacteria, hydroxyputrescine within the class Betaproteobacteria, norspermidine within the class Gammaproteobacteria, and spermidine within the classes Deltaproteobacteria and Epsilonproteobacteria. . Ann Gunma Health Sci 27:, 1–16.
    [Google Scholar]
  14. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  15. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef][PubMed]
    [Google Scholar]
  16. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... London:: Wiley;.
    [Google Scholar]
  17. Liu Y., Xu C. J., Jiang J. T., Liu Y. H., Song X. F., Li H., Liu Z. P.. ( 2010;). Catellibacterium aquatile sp. nov., isolated from fresh water, and emended description of the genus Catellibacterium Tanaka et al. 2004. . Int J Syst Evol Microbiol 60:, 2027–2031. [CrossRef][PubMed]
    [Google Scholar]
  18. Liu J.-J., Zhang X. Q., Chi F.-T., Pan J., Sun C., Wu M.. ( 2014;). Gemmobacter megaterium sp. nov., isolated from coastal planktonic seaweeds. . Int J Syst Evol Microbiol 64:, 66–71. [CrossRef][PubMed]
    [Google Scholar]
  19. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  20. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  21. Rothe B., Fischer A., Hirsch P., Sittig M., Stackebrandt E.. ( 1987;). The phylogenetic position of the budding bacteria Blastobacter aggregatus and Gemmobacter aquatilis gen. nov., sp. nov.. Arch Microbiol 147:, 92–99. [CrossRef]
    [Google Scholar]
  22. Sheu S. Y., Sheu D. S., Sheu F. S., Chen W. M.. ( 2013a;). Gemmobacter tilapiae sp. nov., a poly-β-hydroxybutyrate-accumulating bacterium isolated from a freshwater pond. . Int J Syst Evol Microbiol 63:, 1550–1556. [CrossRef][PubMed]
    [Google Scholar]
  23. Sheu S.-Y., Shiau Y.-W., Wei Y.-T., Chen W.-M.. ( 2013b;). Gemmobacter lanyuensis sp. nov., isolated from a freshwater spring. . Int J Syst Evol Microbiol 63:, 4039–4045. [CrossRef][PubMed]
    [Google Scholar]
  24. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  25. Stolz A., Busse H.-J., Kämpfer P.. ( 2007;). Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:, 572–576. [CrossRef][PubMed]
    [Google Scholar]
  26. Tanaka Y., Hanada S., Manome A., Tsuchida T., Kurane R., Nakamura K., Kamagata Y.. ( 2004;). Catellibacterium nectariphilum gen. nov., sp. nov., which requires a diffusible compound from a strain related to the genus Sphingomonas for vigorous growth. . Int J Syst Evol Microbiol 54:, 955–959. [CrossRef][PubMed]
    [Google Scholar]
  27. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  28. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  29. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
  30. Zhang J., Chen S. A., Zheng J. W., Cai S., Hang B. J., He J., Li S. P.. ( 2012;). Catellibacterium nanjingense sp. nov., a propanil-degrading bacterium isolated from activated sludge, and emended description of the genus Catellibacterium. . Int J Syst Evol Microbiol 62:, 495–499. [CrossRef][PubMed]
    [Google Scholar]
  31. Zheng J. W., Chen Y. G., Zhang J., Ni Y. Y., Li W. J., He J., Li S. P.. ( 2011;). Description of Catellibacterium caeni sp. nov., reclassification of Rhodobacter changlensis Anil Kumar et al. 2007 as Catellibacterium changlense comb. nov. and emended description of the genus Catellibacterium. . Int J Syst Evol Microbiol 61:, 1921–1926. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.000012
Loading
/content/journal/ijsem/10.1099/ijs.0.000012
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error