1887

Abstract

A thermophilic, anaerobic, spore-forming, dissimilatory Fe(III)-reducing bacterium, designated strain SR4, was isolated from sediment of newly formed hydrothermal vents in the area of the eruption of Karymsky volcano on the Kamchatka peninsula. Cells of strain SR4 were straight-to-curved, peritrichous rods, 0.4-0.6 μ in diameter and 3.5-9.0 μ in length, and exhibited a slight tumbling motility. Strain SR4 formed round, refractile, heatresistant endospores in terminally swollen sporangia. The temperature range for growth was 39–78 °C with an optimum at 69–71 °C. The pH range for growth was 4.8-8.2, with an optimum at 6.3-6.5. Strain SR4 grew anaerobically with peptone as carbon source. Amorphous iron(III) oxide present in the medium stimulated the growth of strain SR4; cell numbers increased with the concomitant accumulation of Fe(ll). In the presence of Fe(III), strain SR4 grew on H/CO and utilized molecular hydrogen. Strain SR4 reduced 9,10-anthraquinone-2,6-disulfonic acid, sulfite, thiosulfate, elemental sulfur and MnO. Strain SR4 did not reduce nitrate or sulfate and was not capable of growth with O. The fermentation products from glucose were ethanol, lactate, H and CO The G+C content of DNA was 32 mol%. 16S rDNA sequence analysis placed the organism in the genus . On the basis of physiological properties and phylogenetic analysis, it is proposed that strain SR4 (= DSM 12299) should be assigned to a new species, sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1471
1999-10-01
2024-02-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1471.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1471&mimeType=html&fmt=ahah

References

  1. Balashova V. V., Zavarzin G. A. 1980; Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology (English translation of Mikrohiologiya) 48:635–639
    [Google Scholar]
  2. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A. 1990; Desulfurella acetivorans gen. nov. and sp. nov. - a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155
    [Google Scholar]
  3. Bonch-Osmolovskaya E. A., Miroshnichenko M. L., Chernyh N. A., Kostrikina N. A., Pikuta E. V., Rainey F. A. 1997; Reduction of elemental sulfur by moderately thermophilic organotrophic bacteria and the description of Thermoanaerobacter sulfurophilus sp. nov. Microbiology (English translation of Mikrohiologiya) 66:483–489
    [Google Scholar]
  4. Boone D. R., Liu Y., Zhao Z.-J., Balkwill D. L., Drake G. R., Stevens T. O., Aldrich H. C. 1995; Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45:441–448
    [Google Scholar]
  5. Bridge T. A. M., Johnson D. B. 1998; Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl Environ Microbiol 64:2181–2186
    [Google Scholar]
  6. Brock T. D., Gustafson J. 1976; Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl Environ Microbiol 32:567–571
    [Google Scholar]
  7. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826
    [Google Scholar]
  8. Cook G. M., Rainey F. A., Patel B. K. C., Morgan H. W. 1996; Characterization of a new obligately anaerobic thermophile, Thermoanaerobacter wiegelii sp. nov. Int J Syst Bacteriol 46:123–127
    [Google Scholar]
  9. Corpet F. 1988; Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890
    [Google Scholar]
  10. Fardeau M. L., Cayol J. L., Magot M., Ollivier B. 1994; Hydrogen oxidation abilities in the presence of thiosulfate as electron acceptor within the genus Thermoanaerobacter. Curr Microbiol 29:269–272
    [Google Scholar]
  11. Faudon C., Fardeau M. L., Heim J., Patel B., Magot M., Ollivier B. 1995; Peptide and amino acid oxidation in the presence of thiosulfate by members of the genus Thermoanaerobacter. Curr Microbiol 31:152–157
    [Google Scholar]
  12. Gillis M., De Ley J., De Cleene M. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 12:143–153
    [Google Scholar]
  13. Greene A. C., Patel B. K. C., Sheehy A. J. 1997; Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509
    [Google Scholar]
  14. Jukes T. H., Cantor C. R. 1969 Evolution of protein molecules. Mammalian Protein Metabolism21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  15. Karpov G. A. 1976 Experimental Investigations of the Mineral Formation in Geothermal Wells Moscow: Nauka (in Russian);
    [Google Scholar]
  16. Krivenko V. V., Vadachkoriya R. M., Chernykh N. A., Mityushina L. L., Krassilnikova E. N. 1990; Clostridium uzonii sp. nov., an anaerobic thermophilic glycolytic bacterium from the hot springs of Kamchatka. Microbiology (English translation of Mikrobiologiyd) 59:741–749
    [Google Scholar]
  17. Lane D. J. 1991 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics115–147 Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  18. Lee Y.-E., Jain M. K., Lee C., Lowe S. E., Zeikus J. G. 1993; Taxonomic distinction of saccharolytic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfur ogenes, and Clostridium thermohydro sulfuricum E100-69 as Thermoanaerobacter brockii comb, nov., Thermoanaerobacterium thermosulfurogenes comb, nov., and Thermoanaerobacter thermohydrosulfuricus comb, nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int J Syst Bacteriol 43:41–51
    [Google Scholar]
  19. Liu S. V., Zhou J., Zhang C., Cole D. R., Gajdarziska-Josifovska M., Phelps T. J. 1997; Thermophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary implications. Science 277:1106–1109
    [Google Scholar]
  20. Lovley D. R. 1991; Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287
    [Google Scholar]
  21. Lovley D. R. 1995; Microbial reduction of iron, manganese, and other metals. Adv Agron 54:175–231
    [Google Scholar]
  22. Lovley D. R., Phillips E. J. P. 1988; Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron and manganese. Appl Environ Microbiol 54:1472–1480
    [Google Scholar]
  23. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218
    [Google Scholar]
  24. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 4:109–118
    [Google Scholar]
  25. Nealson K. H., Saffarini D. 1994; Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol 48:311–343
    [Google Scholar]
  26. Norris J. R., Swain H. 1971; Staining bacteria. Methods Microbiol 5A:105–135
    [Google Scholar]
  27. Rainey F. A., Ward N. L., Morgan H. W., Toalster R., Stackebrandt E. 1993; Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J Bacteriol 175:4772–4779
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  29. Slobodkin A. I., Bonch-Osmolovskaya E. A. 1994; Growth and formation of metabolic products by extremely thermophilic archaea of the genus Desulfurococcus in the presence and absence of elemental sulfur. Microbiology (English translation of Mikrobiologiya) 63:552–554
    [Google Scholar]
  30. Slobodkin A. I., Wiegel J. 1997; Fe(lII) as an electron acceptor for H2 oxidation in thermophilic anaerobic enrichment cultures from geothermal areas. Extremophiles 1:106–109
    [Google Scholar]
  31. Slobodkin A.I., Eroshchev-Shak V. A., Kostrikina N. A., Lavrushin V. Y., Dainyak L. G., Zavarzin G. A. 1995; Magnetite formation by thermophilic anaerobic microorganisms. Dokl Akad Nauk 345:694–697 in Russian
    [Google Scholar]
  32. Slobodkin A., Reysenbach A.-L., Strutz N., Dreier M., Wiegel J. 1997; Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int J Syst Bacteriol 41:541–547
    [Google Scholar]
  33. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  34. Wiegel J. K. W. 1986 Genus Thermoanaerobacter. Bergey’s Manual of Systematic Bacteriology 21379–1383 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  35. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chern 238:2882–2886
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-4-1471
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1471
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error