1887

Abstract

Nodule isolates from 11 species of wild legumes in north-western China were characterized by numerical taxonomy, PCR-based 16S rRNA gene RFLP and sequence analyses, DNA-DNA hybridization, restriction patterns of and genes, and symbiotic properties. Based on the results of numerical taxonomy, most of the 35 new isolates were grouped into five clusters (clusters 7, 9, 12, 14 and 15). Clusters 7 and 12 were identified as and , respectively, based on their high DNA homologies with the reference strains for these species, their 16S rRNA gene analysis and their phenotypic features. Results of 16S rDNA PCR-RFLP analysis showed that cluster 9 belonged to . Clusters 14 and 15 were identified as based on their moderately slow-growing, acid-producing characters and the high similarity of their 16S rDNA PCR-RFLP patterns to those of species. These two clusters were genomic species distinct from all described species based on analysis of DNA relatedness within this genus. The isolates in cluster 12 () failed to nodulate their original host and other selected hosts and they did not hybridize to gene probes. The possibility of opportunistic nodulation of these isolates is discussed. Identical restriction patterns were obtained in the gene hybridization studies from the three isolates within cluster 15, which were isolated from the same host species. The isolates from different host plants in each of clusters 9 and 14 produced different RFLP patterns, but similar RFLP patterns appeared (one band for each isolate). Different patterns were observed among different clusters from both the and gene hybridization studies. Cross-nodulation was recorded among the isolates and the host plants in the same cluster and promiscuous properties were found among some of the hosts tested.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-4-1457
1999-10-01
2024-07-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/4/ijs-49-4-1457.html?itemId=/content/journal/ijsem/10.1099/00207713-49-4-1457&mimeType=html&fmt=ahah

References

  1. Allen O. N., Allen E. K. 1981 The Leguminosae’. a Source Book of Characteristics, Uses, and Nodulation Madison, WI: University of Wisconsin Press;
    [Google Scholar]
  2. Amarger N., Macheret V., Laguerre G. 1997; Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov. from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006
    [Google Scholar]
  3. van Berkum P., Beyene D., Eardly B. D. 1996; Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). Int J Syst Bacteriol 46:240–244
    [Google Scholar]
  4. van Berkum P., Beyene D., Bao G., Campbell T. A., Eardly B. D. 1998; Rhizobium mongolense sp. nov., is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int J Syst Bacteriol 48:13–22
    [Google Scholar]
  5. Bouzar H. 1994; Request for a judicial opinion concerning the type species of Agrobacterium. Int J Syst Bacteriol 44:373–374
    [Google Scholar]
  6. Chen W. X., Yan G. H., Li J. L. 1988; Numerical taxonomic study of fast-growing soybean rhizobia and proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397
    [Google Scholar]
  7. Chen W. X., Li G. S., Qi Y. L., Wang E. T., Ruan H. L., Li J. L. 1991; Rhizobium huakuii sp. nov., isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 41:275–280
    [Google Scholar]
  8. Chen W. X., Wang E. T., Wang S. Y., Li Y. B., Chen X. Q., Li Y. 1995; Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol 45:153–159
    [Google Scholar]
  9. Chen W. X., Tan Z. Y., Gao J. L., Li Y., Sui X. H., Wang E. T. 1997; Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol 41:870–873
    [Google Scholar]
  10. De Ley J. 1970; Re-examination of the association between melting point, buoyant density, and chemical base composition of DNA. J Bacteriol 101:738–754
    [Google Scholar]
  11. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142
    [Google Scholar]
  12. Dreyfus B., Garcia J. L., Gillis M. 1988; Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98
    [Google Scholar]
  13. Eardly B. D., Young J. P. W., Selander R. K. 1992; Phylogenetic position of Rhizobium sp. strains Or 191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16s rRNA and nifH genes. Appl Environ Microbiol 58:1809–1815
    [Google Scholar]
  14. Gao J. L, Sun J. G., Li Y., Wang E. T., Chen W. X. 1994; Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int J Syst Bacteriol 44:151–158
    [Google Scholar]
  15. Genetics Computer Group 1994 Program Manual for the Wisconsin Package, Version 8 Madison, WI: Genetics Computer Group;
    [Google Scholar]
  16. Graham P. H., Sadowsky M. J., Keyser H. H.8 other authors 1991; Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 41:582–587
    [Google Scholar]
  17. Imshenetskii A. A., Pariiskaia A. N., Gorelova O. P. 1976; The presence of Agrobacterium tumefaciens in lucerne root nodules. Mikrobiologiya 45:561–563 in Russian
    [Google Scholar]
  18. Jarvis B. D. W., Pankhurst C. E., Patel J. J. 1982; Rhizobium loti, a new species of legume root nodule bacteria. Int J Syst Bacteriol 32:378–380
    [Google Scholar]
  19. Jarvis B. D. W., van Berkum P., Chen W. X., Nour S. M., Fernandez M. P., Cleyet-Marel J. C., Gillis M. 1997; Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum and Rhizobium tianshanense to a new genus: Mesorhizobium. Int J Syst Bacteriol 41:895–898
    [Google Scholar]
  20. Jordan D. C. 1984 Family III. Rhizobiaceae. Bergey’s Manual of Systematic Bacteriology 1234–242 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  21. Kuykendall L. D., Saxena B., Devine T. E., Udell S. E. 1992; Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505
    [Google Scholar]
  22. Laguerre G., Allard M., Revoy F., Amarger N. 1994; Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 61:56–63
    [Google Scholar]
  23. de Lajudie P., Willems A., Pot B.7 other authors 1994; Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb, nov., Sinorhizobium saheli sp. nov., and Sinorhizobium terangae sp. nov. Int J Syst Bacteriol 44:715–733
    [Google Scholar]
  24. de Lajudie P., Laurent-Fulele E., Willems A., Torek U., Coopman R., Collins M. D., Kersters K., Dreyfus B., Gillis M. 1998a; Allorhizobium undicola gen. nov. sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunio natans in Senegal. Int J Syst Bacteriol 48:1277–1290
    [Google Scholar]
  25. de Lajudie P., Willems A., Nick G.9 other authors 1998b; Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382
    [Google Scholar]
  26. Lindstrbm K. 1989; Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Bacteriol 39:365–367
    [Google Scholar]
  27. Lindstrdm K., van Berkum P., Gillis M., Martínez E., Novikova N., Jarvis B. 1995 Report from the roundtable on Rhizobium taxonomy. Nitrogen Fixation·. Fundamentals and Applications807–810 Edited by Tikhonovich I. A., Provorov N. A., Romanov V. I., Newton W. E. Dordrecht: Kluwer;
    [Google Scholar]
  28. Marmur J. 1961; A procedure for the isolation of DNA from microorganisms. J Mol Biol 3:208–218
    [Google Scholar]
  29. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118
    [Google Scholar]
  30. Martínez E., Palacios R., Sánchez F. 1987; Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J Bacteriol 169:2828–2834
    [Google Scholar]
  31. Martinez-Romero E., Caballero-Mellado J. 1996; Rhizobium phylogenies and bacterial genetic diversity. Crit Rev Plant Sci 15:113–140
    [Google Scholar]
  32. Martinez-Romero E., Segovia L, Mercante F. M., Franco, Graham P., Pardo M. A. 1991; Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426
    [Google Scholar]
  33. Nei M., Li W. H. 1979; Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273
    [Google Scholar]
  34. Noel K. D., Sanchez F., Fernandez F., Leemans J., Cevallos A. 1984; Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J Bacteriol 158:148–155
    [Google Scholar]
  35. Nour S. M., Fernandez M. P., Normand P., Cleyet-Marel J.-C. 1994; Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44:511–522
    [Google Scholar]
  36. Nour S. M., Cleyet-Marel J.-C., Normand P., Fernandez M. P. 1995; Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol 45:640–648
    [Google Scholar]
  37. Rome S., Fernandez M. P., Brunel B., Normand P., Cleyet-Marel J.-C. 1996; Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int J Syst Bacteriol 46:972–980
    [Google Scholar]
  38. Sawada H., leki H., Oyaizu H., Matsumoto S. 1993; Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int J Syst Bacteriol 43:694–702
    [Google Scholar]
  39. Segovia L., Young J. P. W., Martinez-Romero E. 1993; Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377
    [Google Scholar]
  40. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy. The Principles and Practices of Numerical Classification San Francisco: W. H. Freeman;
    [Google Scholar]
  41. Somasegaran P., Hoben H. J. 1994 Handbook for Rhizobia: Methods in Legume-Rhizobium Technology. 55–56 New York: Springer;
    [Google Scholar]
  42. Stackebrandt E., Murray R. G. E., Trüper H. G. 1988; Proteobacteria classis nov., a name for the phylogenetic taxon that includes the ‘purple bacteria and their relatives’. Int J Syst Bacteriol 38:321–325
    [Google Scholar]
  43. Sui X. H., Wang E. T., Chen W. X., Wang H. M. 1998; Numerical taxonomy and DNA homogenic analysis of agro-bacterial strains isolated from some regions of China. Acta Phytopathol Sin 28:79–84 in Chinese
    [Google Scholar]
  44. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequences alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  45. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  46. Vincent J. M. 1970 A Manual for the Practical Study of RootNodule Bacteria IBP handbook 15. Oxford: Blackwell;
    [Google Scholar]
  47. Wang S. Y., Chen W. X. 1996 Numerical taxonomy and DNA relatedness of rhizobia isolated from Astragalus spp. Diversity and Taxonomy of Rhizobia79–84 Edited by Li F. D., Lie T. A., Chen W. X., Zhou J. C. Beijing: China Agricultural Scientech Press;
    [Google Scholar]
  48. Wang E. T., van Berkum P., Beyene D., Sui X. H., Dorado O., Chen W. X., Martinez-Romero E. 1998; Rhizobium huautlense sp. nov., a symbiont of Seshania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol 48:687–699
    [Google Scholar]
  49. Wang E. T., van Berkum P., Sui X. H., Beyene D., Chen W. X., Martinez-Romero E. 1999a; Diversity of rhizobia associating with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65
    [Google Scholar]
  50. Wang E. T., Martinez-Romero J., Martinez-Romero E. 1999b; Genetic diversity of rhizobia from Leucaena leucocephala nodules in Mexican soils. Mol Ecol in press
    [Google Scholar]
  51. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  52. Willems A., Collins D. 1993; Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequence. Int J Syst Bacteriol 43:305–313
    [Google Scholar]
  53. Xu L. M., Ge C., Cui Z., Li J., Fan H. 1995; Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 45:706–711
    [Google Scholar]
  54. Yanagi M., Yamasato K. 1993; Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107:115–120
    [Google Scholar]
  55. Yelton M. M., Yang S. S., Edie S.A., Lim S. T. 1983; Characterization of an effective salt-tolerant, fast-growing strain of Rhizobium japonicum. J Gen Microbiol 129:1537–1547
    [Google Scholar]
  56. Young J. P. W. 1994 All those new names: an overview of the molecular phylogeny of plant-associated bacteria. Advances in Molecular Genetics of Plant-Microbe Interactions 373–80 Edited by Daniels M. J., Downiel J. A., Osbourne A. E. Netherlands: Kluwer;
    [Google Scholar]
  57. Young J. P. W., Haukka K. 1996; Diversity and phylogeny of rhizobia. New Phytol 133:87–94
    [Google Scholar]
  58. Young J. P. W., Downer L. H., Eardly B. D. 1991; Phylogeny of the phototropic Rhizobium strain BTAil by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol 173:2271–2277
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-4-1457
Loading
/content/journal/ijsem/10.1099/00207713-49-4-1457
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error