1887

Abstract

strains TYS and TY isolated from the Guaymas Basin hydrothermal vent site and previously described were compared by DNA-DNA hybridization analysis with the closest species in terms of physiology and nutritional aspects. On the basis of the new data and taking into consideration the molecular, physiological and morphological traits published previously, it is proposed that strains TY and TYS should be classified as new species named sp. nov. and sp. nov., respectively. The type strain of . is strain TY (= DSM 10597) and the type strain of . is strain TYS (= DSM 11113).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-48-4-1181
1998-10-01
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/48/4/ijs-48-4-1181.html?itemId=/content/journal/ijsem/10.1099/00207713-48-4-1181&mimeType=html&fmt=ahah

References

  1. Antoine E., Guezennec G., Meunier J. R., Lesongeur F., Barbier G. 1995; Isolation and characterization of extremely thermophilic archaebacteria related to the genus Thermococcus from deep-sea hydrothermal Guaymas basin. Curr Microbiol 31:186–192
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe W. S. 1979; Methanogens: re-evaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  3. Barns S. M., Fundyga R. E., Jeffries M. W., Pace N. R. 1994 Remarkable archaeal diversity in a Yellowstone National Park hot spring environmentProc Natl Acad SeiUSA 91:1609–1613
    [Google Scholar]
  4. Canganella F., Jones J. W. 1994a; Microbial characterization of thermophilic archaea isolated from the Guaymas Basin hydrothermal vent. Curr Microbiol 28:299–306
    [Google Scholar]
  5. Canganella F., Jones J. W. 1994b; Fermentation studies with thermophilic archaea in pure culture and in syntrophy with a thermophilic methanogen. Curr Microbiol 28:293–298
    [Google Scholar]
  6. Canganella F., Jones J. W., Gambacorta A., Antranikian G. 1997; Biochemical and phylogenetic characterization of two novel deep-sea Thermococcus isolates with potentially biotechnological applications. Arch Microbiol 167:233–238
    [Google Scholar]
  7. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142
    [Google Scholar]
  9. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626
    [Google Scholar]
  10. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethylsulphoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327
    [Google Scholar]
  11. Godfroy A., Meunier J.-R., Guezennec J., Lesongeur F., Raguénès G., Rimbault A., Barbier G. 1996; Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the north Fiji basin. Int J Syst Bacteriol 46:1113–1119
    [Google Scholar]
  12. Godfroy A., Lesongeur F., Raguénès G., Quérellou J., Antoine E., Meunier J.-R., Guezennec J., Barbier G. 1997; Thermococcus hydr other malis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Svst Bacteriol 47:622–626
    [Google Scholar]
  13. Gonzalez J. M., Kato C., Horikoshi K. 1995; Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol 164:159–164
    [Google Scholar]
  14. Huber R., Stohr J., Hohenhaus S., Rachel R., Burggraf S., Jannasch H., Stetter K. O. 1995; Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal vent environment. Arch Microbiol 164:255–264
    [Google Scholar]
  15. Jahnke K.-D. 1992; BASIC computer program for evaluation of spectroscopic DNA renaturation data from Gilford Syst 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian protein metabolism21–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  17. Keller M., Braun F.-J., Dirmeier R., Hafenbradl D., Burggraf S., Rachel R., Stetter K. O. 1995; Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol 164:390–395
    [Google Scholar]
  18. Kobayashi T., Kwak Y. S., Akiba T., Kudo T., Horikoshi K. 1994; Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst Appl Microbiol 17:232–236
    [Google Scholar]
  19. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218
    [Google Scholar]
  20. Marteinsson V. T., Watrin L., Prieur D., Caprais J. C., Raguénès G., Erauso G. 1995; Phenotypic characterization, DNA similarities, and protein profiles of twenty sulfur-metabolizing hyperthermophilic anaerobic archaea isolated from hydrothermal vents in the southwestern pacific ocean. Int J Syst Bacteriol 45:623–632
    [Google Scholar]
  21. Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Neuner A., Kostrikina N. A., Chernych N. A., Alekseev V. A. 1989; Thermococcus stetteri sp. nov., a new extremely thermophilic marine archaebacteria. Syst Appl Microbiol 12:257–262
    [Google Scholar]
  22. Mesbah M., Premachadran U., Whitman W. B. 1989; Precise measurement of the G + C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167
    [Google Scholar]
  23. Neuner A., Jannasch H. W., Belkin S., Stetter K. O. 1990; Thermococcus litoralis sp. nov., a new species of extremely thermophilic marine archaebacteria. Arch Microbiol 153:205–207
    [Google Scholar]
  24. Rainey F. A., Dorsch M., Morgan H. M., Stackebrandt E. 1992; 16S rDNA analysis of Spirochaeta thermophila: its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst Appl Microbiol 15:197–202
    [Google Scholar]
  25. Rainey F. A., Stackebrandt E. 1993; 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia. FEMS Microbiol Lett 113:125–128
    [Google Scholar]
  26. Ronimus R. S., Reysenbach A.-L., Musgrave D. R., Morgan H. W. 1997; The phylogenetic position of the Thermococcus isolate AN1 based on 16S rRNA gene sequence analysis: a proposal that AN1 represents a new species, Thermococcus zilligii sp. nov. Arch Microbiol 168:245–248
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  28. Zillig W., Holz I., Janekovic D., Schafer W., Reiter W. D. 1983; The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbiol 4:88–94
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-48-4-1181
Loading
/content/journal/ijsem/10.1099/00207713-48-4-1181
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error