1887

Abstract

A new thermophilic, anaerobic rod-shaped bacterium, strain BI429 was isolated from the gills of a deep-sea vent hydrothermal mussel, , from the Lau Basin (Southwestern Pacific Ocean). Pheno-typically, this isolate exhibited characteristics similar to those described for members of the order . This organism was identified as a member of the genus on the basis of the presence of the typical outer sheath-like structure (toga), its 16S rRNA sequence, and its ability to grow on carbohydrates (sucrose, starch, glucose, maltose, lactose, cellobiose, and galactose). The cells of this organism were gram negative and rod shaped and generally occurred singly or in pairs, rarely occurring as chains with a maximum of five rods. At the optimum temperature for growth (70°C), optimum pH (6.5), and optimum salinity (30 g of NaCl per liter), the doubling time was 100 min. In spite of the high percentage of similarity of its 16S rRNA sequence with that of (98.6%), the weak level of DNA-DNA reassociation with this strain (2%) and particular physiological characteristics allowed us to differentiate this new organism from the sole species of the genus previously described (). On the basis of these observations, we propose that the new organism should be described as a new species, . The type strain of is BI429.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-47-4-1118
1997-10-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/47/4/ijs-47-4-1118.html?itemId=/content/journal/ijsem/10.1099/00207713-47-4-1118&mimeType=html&fmt=ahah

References

  1. Andrews K. T., Patel B. K. C. 1996; Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of australia. Int. J. Syst. Bacteriol. 46:265–269
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrura R. J., Wolfe R. S. 1979; Methanogens: reevalution of a unique biological group. Microbiol. Rev. 43:260–296
    [Google Scholar]
  3. Bligh E. G., Dyer W. J. 1959; A rapid method for lipid extraction and purification. Can. J. Microbiol. 35:911–917
    [Google Scholar]
  4. Davey M. B., Wood W. A., Key R., Nakamura K., Stahl D. 1993; Isolation of three species of Geotoga and Petrotoga’, two new genera, representing a new lineage in the bacterial line of descent distantly related to the ‘“Thermotogales.” Syst. Appl. Microbiol. 16:191–200
    [Google Scholar]
  5. Desbruyères D., Alayse-Danet A. M., Ohta S.the Scientific Parties of Biolau and Starmer Cruises 1994; Deep-sea hydrothermal communities in Southwestern Pacific back-arc basins (the North-Fiji and Lau Basins): composition, microdistribution and food web. Mar. Geol. 116:227–242
    [Google Scholar]
  6. Felsenstein J. 1990 PHYLIP package, version 3.3. Department of Genetics; University of Washington, Seattle.:
    [Google Scholar]
  7. Fouquet Y., Von Stackelberg U., Charlou J. L., Donval J. P., Erzinger J., Foucher J. P., Herzig P., Mühe R., Soakai S., Wiedicke M., Whitechurch H. 1991; Hydrothermal activity and metallogenesis in the Lau back-arc basin. Nature 349:778–781
    [Google Scholar]
  8. Grimont P. A. D., Popoff M. Y., Grimont F., Coynault C., Lemelin M. 1980; Reproductibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr. Microbiol. 4:337–342
    [Google Scholar]
  9. Guezennec J. G. 1991; Influence of cathodic protection of mild steel on the growth of sulphate-reducing bacteria at 35°C in marine sediments. Biofouling 3:339–348
    [Google Scholar]
  10. Hobbie J. E., Daley R. J., Jasper S. 1977; Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33:1225–1228
    [Google Scholar]
  11. Huber R., Langworthy T. A., König H., Thomm M., Woese C. R., Sleytr U. B., Stetter K. O. 1986; Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch. Microbiol. 144:324–333
    [Google Scholar]
  12. Huber R., Woese C. R., Langworthy T. A., Fricke H., Stetter K. O. 1989; Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the “Thermotogales.” Syst. Appl. Microbiol. 12:32–37
    [Google Scholar]
  13. Huber R., Woese C. R., Langworthy T. A., Kristjansson J. K., Stetter K. O. 1990; Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales.” Arch. Microbiol. 154:105–111
    [Google Scholar]
  14. Huber R., Stetter K. O. 1992 The “Thermotogales”: hyperthermophilic and extremely thermophilic bacteria. 185–194 Kristjansson J. K.ed Thermophilic bacteria CRC Press; London, United Kingdom.:
    [Google Scholar]
  15. Jannasch H. W., Huber R., Belkin S., Stetter K. O. 1988; Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. Arch. Microbiol. 150:103–104
    [Google Scholar]
  16. Jeanthon C., Reysenbach A L., L’Haridon S., Gambacorta A., Pace N. R., Glenat P., Prieur D. 1995; Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch. Microbiol. 164:91–97
    [Google Scholar]
  17. Kengen S. W. M., Stams A. J. M. 1994; Formation of l-Alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch. Microbiol. 161:168–175
    [Google Scholar]
  18. Lindroth P., Mopper K. 1979; High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde. Anal. Chem. 51:1667–1674
    [Google Scholar]
  19. Marmur J. 1961; A procedure for isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3:208–218
    [Google Scholar]
  20. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5:109–118
    [Google Scholar]
  21. Nichols P. D., Guckert J. B., White D. C. 1986; Determination of monounsaturated fatty acid double bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyldisulfur adducts. J. Microbiol. Methods 5:49–55
    [Google Scholar]
  22. Patel B. K. C., Morgan H. W., Daniel R. M. 1985; Fervidobacterium nodosum gen. nov. and spec, nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 141:63–69
    [Google Scholar]
  23. Pecina R., Bonn G., BurtCher E., Bobleter O. 1984; High performance liquid chromatographic elution behaviour of alcohols, aldehydes, ketones, organic acids and carbohydrates on a string carbon exchange stationary phase. J. Chromatogr. 287:245–259
    [Google Scholar]
  24. Prieur D., Erauso G., Jeanthon C. 1995; Hyperthermophilic life at deep-sea hydrothermal vents. Planet. Space Sci. 43:115–122
    [Google Scholar]
  25. Popoff M. Y., Coynault C. 1980; Use of DEAE-cellulose filters in the SI nuclease method for bacterial deoxyribonucleic acid hybridization. Ann. Microbiol 131A:151–155
    [Google Scholar]
  26. Ravot G., Magot M., Fardeau M.-L., Patel B. K. C., Prensier G., Egan A., Garcia J.-L., Ollivier B. 1995; Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int. J. Syst. Bacteriol. 45:308–314
    [Google Scholar]
  27. Ravot G., Ollivier B., Magot M., Patel B. K. C., Crolet J.-L., Fardeau M.-L., Garcia J.-L. 1995; Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales. Appl. Environ. Microbiol. 61:2053–2055
    [Google Scholar]
  28. Ravot G., Ollivier B., Patel B. K. C., Magot M., Garcia J.-L. 1996; Emended description of Thermosipho africanus as a carbohydrate-fermenting species using thiosulfate as an electron acceptor. Int. J. Syst. Bacteriol. 46:321–323
    [Google Scholar]
  29. Ravot G., Ollivier B., Fardeau M.-L., Patel B. K. C., Andrews K. T., Magot M., Garcia J.-L. 1996; L-Alanine production from glucose fermentation by hyperthermophilic members of the domains Bacteria and Archaea: a remnant of an ancestral metabolism? Appl. Environ. Microbiol. 62:2657–2659
    [Google Scholar]
  30. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning: a laboratory manual, 2nd. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, N.Y.:
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
    [Google Scholar]
  33. Swofford D. 1992 PAUP: phylogenetic analysis using parsimony, version 3.0s. Illinois Natural History Survey; Champaign.:
    [Google Scholar]
  34. von Cosel R., Metivier B. 1994; Three new species of Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal vents in the Lau Basin and the North Fiji Basin, Western Pacific, and the Snake Pit Area, Mid-Atlantic Ridge. Veliger 37:374–392
    [Google Scholar]
  35. White D. C., Nickels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62
    [Google Scholar]
  36. Wiegel J. 1992 The anaerobic thermophilic bacteria. 105–184 Kristjansson J. K.ed Thermophilic bacteria CRC Press; London, United Kingdom.:
    [Google Scholar]
  37. Windberger E., Huber R., Trincone A., Fricke H., Stetter K. O. 1989; Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Arch. Microbiol. 151:506–512
    [Google Scholar]
  38. Zobell C. E. 1941; Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J. Mar. Res. 4:42–75
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-47-4-1118
Loading
/content/journal/ijsem/10.1099/00207713-47-4-1118
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error